mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 02:12:01 +00:00
Merge pull request #9703 from freqtrade/feat/allow-custom-feature-plot
feat: allow custom user features to be plotted in backtesting (freqai)
This commit is contained in:
commit
32a4aa0ca8
|
@ -162,7 +162,8 @@ Below are the values you can expect to include/use inside a typical strategy dat
|
|||
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br> **Datatype:** Float.
|
||||
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
|
||||
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Float.
|
||||
| `df['%*']` | Any dataframe column prepended with `%` in `feature_engineering_*()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
|
||||
| `df['%*']` | Any dataframe column prepended with `%` in `feature_engineering_*()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%` (see details below). <br> **Datatype:** Depends on the feature created by the user.
|
||||
| `df['%%*']` | Any dataframe column prepended with `%%` in `feature_engineering_*()` is treated as a training feature, just the same as the above `%` prepend. However, in this case, the features are returned back to the strategy for FreqUI/plot-dataframe plotting and monitoring in Dry/Live/Backtesting <br> **Datatype:** Depends on the feature created by the user. Please note that features created in `feature_engineering_expand()` will have automatic FreqAI naming schemas depending on the expansions that you configured (i.e. `include_timeframes`, `include_corr_pairlist`, `indicators_periods_candles`, `include_shifted_candles`). So if you want to plot `%%-rsi` from `feature_engineering_expand_all()`, the final naming scheme for your plotting config would be: `%%-rsi-period_10_ETH/USDT:USDT_1h` for the `rsi` feature with `period=10`, `timeframe=1h`, and `pair=ETH/USDT:USDT` (the `:USDT` is added if you are using futures pairs). It is useful to simply add `print(dataframe.columns)` in your `populate_indicators()` after `self.freqai.start()` to see the full list of available features that are returned to the strategy for plotting purposes.
|
||||
|
||||
## Setting the `startup_candle_count`
|
||||
|
||||
|
|
|
@ -432,8 +432,12 @@ class FreqaiDataKitchen:
|
|||
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||
append_df["DI_values"] = self.DI_values
|
||||
|
||||
user_cols = [col for col in dataframe_backtest.columns if col.startswith("%%")]
|
||||
cols = ["date"]
|
||||
cols.extend(user_cols)
|
||||
|
||||
dataframe_backtest.reset_index(drop=True, inplace=True)
|
||||
merged_df = pd.concat([dataframe_backtest["date"], append_df], axis=1)
|
||||
merged_df = pd.concat([dataframe_backtest[cols], append_df], axis=1)
|
||||
return merged_df
|
||||
|
||||
def append_predictions(self, append_df: DataFrame) -> None:
|
||||
|
@ -451,7 +455,8 @@ class FreqaiDataKitchen:
|
|||
Back fill values to before the backtesting range so that the dataframe matches size
|
||||
when it goes back to the strategy. These rows are not included in the backtest.
|
||||
"""
|
||||
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
|
||||
to_keep = [col for col in dataframe.columns if
|
||||
not col.startswith("&") and not col.startswith("%%")]
|
||||
self.return_dataframe = pd.merge(dataframe[to_keep],
|
||||
self.full_df, how='left', on='date')
|
||||
self.return_dataframe[self.full_df.columns] = (
|
||||
|
|
Loading…
Reference in New Issue
Block a user