Merge pull request #3018 from freqtrade/max_drawdown

Max drawdown in plot-profit
This commit is contained in:
hroff-1902 2020-03-04 20:42:57 +03:00 committed by GitHub
commit 33c1c8f726
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 84 additions and 6 deletions

View File

@ -196,6 +196,7 @@ The first graph is good to get a grip of how the overall market progresses.
The second graph will show if your algorithm works or doesn't.
Perhaps you want an algorithm that steadily makes small profits, or one that acts less often, but makes big swings.
This graph will also highlight the start (and end) of the Max drawdown period.
The third graph can be useful to spot outliers, events in pairs that cause profit spikes.

View File

@ -3,7 +3,7 @@ Helpers when analyzing backtest data
"""
import logging
from pathlib import Path
from typing import Dict, Union
from typing import Dict, Union, Tuple
import numpy as np
import pandas as pd
@ -188,3 +188,28 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
# FFill to get continuous
df[col_name] = df[col_name].ffill()
return df
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time',
value_col: str = 'profitperc'
) -> Tuple[float, pd.Timestamp, pd.Timestamp]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_time')
:param value_col: Column in DataFrame to use for values (defaults to 'profitperc')
:return: Tuple (float, highdate, lowdate) with absolute max drawdown, high and low time
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col)
max_drawdown_df = pd.DataFrame()
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
high_date = profit_results.loc[max_drawdown_df['high_value'].idxmax(), date_col]
low_date = profit_results.loc[max_drawdown_df['drawdown'].idxmin(), date_col]
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date

View File

@ -5,7 +5,8 @@ from typing import Any, Dict, List
import pandas as pd
from freqtrade.configuration import TimeRange
from freqtrade.data.btanalysis import (combine_tickers_with_mean,
from freqtrade.data.btanalysis import (calculate_max_drawdown,
combine_tickers_with_mean,
create_cum_profit,
extract_trades_of_period, load_trades)
from freqtrade.data.converter import trim_dataframe
@ -111,6 +112,36 @@ def add_profit(fig, row, data: pd.DataFrame, column: str, name: str) -> make_sub
return fig
def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame) -> make_subplots:
"""
Add scatter points indicating max drawdown
"""
try:
max_drawdown, highdate, lowdate = calculate_max_drawdown(trades)
drawdown = go.Scatter(
x=[highdate, lowdate],
y=[
df_comb.loc[highdate, 'cum_profit'],
df_comb.loc[lowdate, 'cum_profit'],
],
mode='markers',
name=f"Max drawdown {max_drawdown:.2f}%",
text=f"Max drawdown {max_drawdown:.2f}%",
marker=dict(
symbol='square-open',
size=9,
line=dict(width=2),
color='green'
)
)
fig.add_trace(drawdown, row, 1)
except ValueError:
logger.warning("No trades found - not plotting max drawdown.")
return fig
def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
"""
Add trades to "fig"
@ -364,6 +395,7 @@ def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
fig.add_trace(avgclose, 1, 1)
fig = add_profit(fig, 2, df_comb, 'cum_profit', 'Profit')
fig = add_max_drawdown(fig, 2, trades, df_comb)
for pair in pairs:
profit_col = f'cum_profit_{pair}'

View File

@ -2,15 +2,17 @@ from unittest.mock import MagicMock
import pytest
from arrow import Arrow
from pandas import DataFrame, DateOffset, to_datetime
from pandas import DataFrame, DateOffset, to_datetime, Timestamp
from freqtrade.configuration import TimeRange
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
analyze_trade_parallelism,
calculate_max_drawdown,
combine_tickers_with_mean,
create_cum_profit,
extract_trades_of_period,
load_backtest_data, load_trades,
load_trades_from_db, analyze_trade_parallelism)
load_trades_from_db)
from freqtrade.data.history import load_data, load_pair_history
from tests.test_persistence import create_mock_trades
@ -163,3 +165,17 @@ def test_create_cum_profit1(testdatadir):
assert "cum_profits" in cum_profits.columns
assert cum_profits.iloc[0]['cum_profits'] == 0
assert cum_profits.iloc[-1]['cum_profits'] == 0.0798005
def test_calculate_max_drawdown(testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
drawdown, h, low = calculate_max_drawdown(bt_data)
assert isinstance(drawdown, float)
assert pytest.approx(drawdown) == 0.21142322
assert isinstance(h, Timestamp)
assert isinstance(low, Timestamp)
assert h == Timestamp('2018-01-24 14:25:00', tz='UTC')
assert low == Timestamp('2018-01-30 04:45:00', tz='UTC')
with pytest.raises(ValueError, match='Trade dataframe empty.'):
drawdown, h, low = calculate_max_drawdown(DataFrame())

View File

@ -3,15 +3,16 @@ from copy import deepcopy
from pathlib import Path
from unittest.mock import MagicMock
import pandas as pd
import plotly.graph_objects as go
import pytest
from plotly.subplots import make_subplots
from freqtrade.commands import start_plot_dataframe, start_plot_profit
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import create_cum_profit, load_backtest_data
from freqtrade.exceptions import OperationalException
from freqtrade.commands import start_plot_dataframe, start_plot_profit
from freqtrade.plot.plotting import (add_indicators, add_profit,
create_plotconfig,
generate_candlestick_graph,
@ -266,6 +267,7 @@ def test_generate_profit_graph(testdatadir):
trades = load_backtest_data(filename)
timerange = TimeRange.parse_timerange("20180110-20180112")
pairs = ["TRX/BTC", "ADA/BTC"]
trades = trades[trades['close_time'] < pd.Timestamp('2018-01-12', tz='UTC')]
tickers = history.load_data(datadir=testdatadir,
pairs=pairs,
@ -283,13 +285,15 @@ def test_generate_profit_graph(testdatadir):
assert fig.layout.yaxis3.title.text == "Profit"
figure = fig.layout.figure
assert len(figure.data) == 4
assert len(figure.data) == 5
avgclose = find_trace_in_fig_data(figure.data, "Avg close price")
assert isinstance(avgclose, go.Scatter)
profit = find_trace_in_fig_data(figure.data, "Profit")
assert isinstance(profit, go.Scatter)
profit = find_trace_in_fig_data(figure.data, "Max drawdown 0.00%")
assert isinstance(profit, go.Scatter)
for pair in pairs:
profit_pair = find_trace_in_fig_data(figure.data, f"Profit {pair}")