mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
Merge pull request #2261 from freqtrade/test_speedup
[minor] Test speedup
This commit is contained in:
commit
39f41def54
|
@ -4,14 +4,16 @@ import talib.abstract as ta
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
from freqtrade.indicator_helpers import fishers_inverse
|
|
||||||
from freqtrade.strategy.interface import IStrategy
|
from freqtrade.strategy.interface import IStrategy
|
||||||
|
|
||||||
|
|
||||||
class DefaultStrategy(IStrategy):
|
class DefaultStrategy(IStrategy):
|
||||||
"""
|
"""
|
||||||
Default Strategy provided by freqtrade bot.
|
Default Strategy provided by freqtrade bot.
|
||||||
You can override it with your own strategy
|
Please do not modify this strategy, it's intended for internal use only.
|
||||||
|
Please look at the SampleStrategy in the user_data/strategy directory
|
||||||
|
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
||||||
|
for samples and inspiration.
|
||||||
"""
|
"""
|
||||||
INTERFACE_VERSION = 2
|
INTERFACE_VERSION = 2
|
||||||
|
|
||||||
|
@ -74,67 +76,25 @@ class DefaultStrategy(IStrategy):
|
||||||
# ADX
|
# ADX
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
|
||||||
# Awesome oscillator
|
|
||||||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
|
||||||
"""
|
|
||||||
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
|
|
||||||
dataframe['cci'] = ta.CCI(dataframe)
|
|
||||||
"""
|
|
||||||
# MACD
|
# MACD
|
||||||
macd = ta.MACD(dataframe)
|
macd = ta.MACD(dataframe)
|
||||||
dataframe['macd'] = macd['macd']
|
dataframe['macd'] = macd['macd']
|
||||||
dataframe['macdsignal'] = macd['macdsignal']
|
dataframe['macdsignal'] = macd['macdsignal']
|
||||||
dataframe['macdhist'] = macd['macdhist']
|
dataframe['macdhist'] = macd['macdhist']
|
||||||
|
|
||||||
# MFI
|
|
||||||
dataframe['mfi'] = ta.MFI(dataframe)
|
|
||||||
|
|
||||||
# Minus Directional Indicator / Movement
|
# Minus Directional Indicator / Movement
|
||||||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
|
||||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||||
|
|
||||||
# Plus Directional Indicator / Movement
|
# Plus Directional Indicator / Movement
|
||||||
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
|
||||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
"""
|
|
||||||
# ROC
|
|
||||||
dataframe['roc'] = ta.ROC(dataframe)
|
|
||||||
"""
|
|
||||||
# RSI
|
# RSI
|
||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
|
|
||||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
|
||||||
dataframe['fisher_rsi'] = fishers_inverse(dataframe['rsi'])
|
|
||||||
|
|
||||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
|
||||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
|
||||||
|
|
||||||
# Stoch
|
|
||||||
stoch = ta.STOCH(dataframe)
|
|
||||||
dataframe['slowd'] = stoch['slowd']
|
|
||||||
dataframe['slowk'] = stoch['slowk']
|
|
||||||
|
|
||||||
# Stoch fast
|
# Stoch fast
|
||||||
stoch_fast = ta.STOCHF(dataframe)
|
stoch_fast = ta.STOCHF(dataframe)
|
||||||
dataframe['fastd'] = stoch_fast['fastd']
|
dataframe['fastd'] = stoch_fast['fastd']
|
||||||
dataframe['fastk'] = stoch_fast['fastk']
|
dataframe['fastk'] = stoch_fast['fastk']
|
||||||
"""
|
|
||||||
# Stoch RSI
|
|
||||||
stoch_rsi = ta.STOCHRSI(dataframe)
|
|
||||||
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
|
||||||
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Overlap Studies
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
# Previous Bollinger bands
|
|
||||||
# Because ta.BBANDS implementation is broken with small numbers, it actually
|
|
||||||
# returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
|
|
||||||
# and use middle band instead.
|
|
||||||
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
|
||||||
|
|
||||||
# Bollinger bands
|
# Bollinger bands
|
||||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||||
|
@ -143,88 +103,11 @@ class DefaultStrategy(IStrategy):
|
||||||
dataframe['bb_upperband'] = bollinger['upper']
|
dataframe['bb_upperband'] = bollinger['upper']
|
||||||
|
|
||||||
# EMA - Exponential Moving Average
|
# EMA - Exponential Moving Average
|
||||||
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
|
||||||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
|
||||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||||
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
|
||||||
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
|
||||||
|
|
||||||
# SAR Parabol
|
|
||||||
dataframe['sar'] = ta.SAR(dataframe)
|
|
||||||
|
|
||||||
# SMA - Simple Moving Average
|
# SMA - Simple Moving Average
|
||||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||||
|
|
||||||
# TEMA - Triple Exponential Moving Average
|
|
||||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
|
||||||
|
|
||||||
# Cycle Indicator
|
|
||||||
# ------------------------------------
|
|
||||||
# Hilbert Transform Indicator - SineWave
|
|
||||||
hilbert = ta.HT_SINE(dataframe)
|
|
||||||
dataframe['htsine'] = hilbert['sine']
|
|
||||||
dataframe['htleadsine'] = hilbert['leadsine']
|
|
||||||
|
|
||||||
# Pattern Recognition - Bullish candlestick patterns
|
|
||||||
# ------------------------------------
|
|
||||||
"""
|
|
||||||
# Hammer: values [0, 100]
|
|
||||||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
|
||||||
# Inverted Hammer: values [0, 100]
|
|
||||||
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
|
||||||
# Dragonfly Doji: values [0, 100]
|
|
||||||
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
|
||||||
# Piercing Line: values [0, 100]
|
|
||||||
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
|
||||||
# Morningstar: values [0, 100]
|
|
||||||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
|
||||||
# Three White Soldiers: values [0, 100]
|
|
||||||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Pattern Recognition - Bearish candlestick patterns
|
|
||||||
# ------------------------------------
|
|
||||||
"""
|
|
||||||
# Hanging Man: values [0, 100]
|
|
||||||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
|
||||||
# Shooting Star: values [0, 100]
|
|
||||||
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
|
||||||
# Gravestone Doji: values [0, 100]
|
|
||||||
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
|
||||||
# Dark Cloud Cover: values [0, 100]
|
|
||||||
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
|
||||||
# Evening Doji Star: values [0, 100]
|
|
||||||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
|
||||||
# Evening Star: values [0, 100]
|
|
||||||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
|
||||||
# ------------------------------------
|
|
||||||
"""
|
|
||||||
# Three Line Strike: values [0, -100, 100]
|
|
||||||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
|
||||||
# Spinning Top: values [0, -100, 100]
|
|
||||||
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
|
||||||
# Engulfing: values [0, -100, 100]
|
|
||||||
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
|
||||||
# Harami: values [0, -100, 100]
|
|
||||||
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
|
||||||
# Three Outside Up/Down: values [0, -100, 100]
|
|
||||||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
|
||||||
# Three Inside Up/Down: values [0, -100, 100]
|
|
||||||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Chart type
|
|
||||||
# ------------------------------------
|
|
||||||
# Heikinashi stategy
|
|
||||||
heikinashi = qtpylib.heikinashi(dataframe)
|
|
||||||
dataframe['ha_open'] = heikinashi['open']
|
|
||||||
dataframe['ha_close'] = heikinashi['close']
|
|
||||||
dataframe['ha_high'] = heikinashi['high']
|
|
||||||
dataframe['ha_low'] = heikinashi['low']
|
|
||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
|
@ -603,7 +603,7 @@ def test_processed(default_conf, mocker, testdatadir) -> None:
|
||||||
cols = dataframe.columns
|
cols = dataframe.columns
|
||||||
# assert the dataframe got some of the indicator columns
|
# assert the dataframe got some of the indicator columns
|
||||||
for col in ['close', 'high', 'low', 'open', 'date',
|
for col in ['close', 'high', 'low', 'open', 'date',
|
||||||
'ema50', 'ao', 'macd', 'plus_dm']:
|
'ema10', 'rsi', 'fastd', 'plus_di']:
|
||||||
assert col in cols
|
assert col in cols
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user