mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 02:12:01 +00:00
add plotting for backtested trades
This commit is contained in:
parent
0440a19171
commit
3cedace2f6
|
@ -27,9 +27,12 @@ Example of usage:
|
|||
import logging
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
from pathlib import Path
|
||||
from argparse import Namespace
|
||||
from typing import Dict, List, Any
|
||||
|
||||
import pandas as pd
|
||||
import plotly.graph_objs as go
|
||||
from plotly import tools
|
||||
from plotly.offline import plot
|
||||
|
@ -103,10 +106,42 @@ def plot_analyzed_dataframe(args: Namespace) -> None:
|
|||
exit()
|
||||
|
||||
# Get trades already made from the DB
|
||||
trades: List[Trade] = []
|
||||
trades: pd.DataFrame = pd.DataFrame()
|
||||
if args.db_url:
|
||||
persistence.init(_CONF)
|
||||
trades = Trade.query.filter(Trade.pair.is_(pair)).all()
|
||||
trades_ = Trade.query.filter(Trade.pair.is_(pair)).all()
|
||||
# columns = ["pair", "profit", "opents", "closets", "index", "duration"]
|
||||
columns = ["pair", "profit", "opents", "closets", "open_rate", "close_rate", "duration"]
|
||||
|
||||
trades = pd.DataFrame([(t.pair, t.calc_profit(),
|
||||
t.open_date, t.close_date,
|
||||
t.open_rate, t.close_rate,
|
||||
t.close_date.timestamp() - t.open_date.timestamp())
|
||||
for t in trades_], columns=columns)
|
||||
|
||||
if args.exportfilename:
|
||||
file = Path(args.exportfilename)
|
||||
# must align with columns in backtest.py
|
||||
columns = ["pair", "profit", "opents", "closets", "index", "duration",
|
||||
"open_rate", "close_rate", "open_at_end"]
|
||||
with file.open() as f:
|
||||
data = json.load(f)
|
||||
trades = pd.DataFrame(data, columns=columns)
|
||||
trades = trades.loc[trades["pair"] == pair]
|
||||
if timerange:
|
||||
if timerange.starttype == 'date':
|
||||
trades = trades.loc[trades["opents"] >= timerange.startts]
|
||||
if timerange.stoptype == 'date':
|
||||
trades = trades.loc[trades["opents"] <= timerange.stopts]
|
||||
|
||||
trades['opents'] = pd.to_datetime(trades['opents'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
trades['closets'] = pd.to_datetime(trades['closets'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
|
||||
dataframes = analyze.tickerdata_to_dataframe(tickers)
|
||||
dataframe = dataframes[pair]
|
||||
|
@ -126,7 +161,7 @@ def plot_analyzed_dataframe(args: Namespace) -> None:
|
|||
plot(fig, filename=os.path.join('user_data', 'freqtrade-plot.html'))
|
||||
|
||||
|
||||
def generate_graph(pair, trades, data, args) -> tools.make_subplots:
|
||||
def generate_graph(pair, trades: pd.DataFrame, data: pd.DataFrame, args) -> tools.make_subplots:
|
||||
"""
|
||||
Generate the graph from the data generated by Backtesting or from DB
|
||||
:param pair: Pair to Display on the graph
|
||||
|
@ -187,8 +222,8 @@ def generate_graph(pair, trades, data, args) -> tools.make_subplots:
|
|||
)
|
||||
|
||||
trade_buys = go.Scattergl(
|
||||
x=[t.open_date.isoformat() for t in trades],
|
||||
y=[t.open_rate for t in trades],
|
||||
x=trades["opents"],
|
||||
y=trades["open_rate"],
|
||||
mode='markers',
|
||||
name='trade_buy',
|
||||
marker=dict(
|
||||
|
@ -199,8 +234,8 @@ def generate_graph(pair, trades, data, args) -> tools.make_subplots:
|
|||
)
|
||||
)
|
||||
trade_sells = go.Scattergl(
|
||||
x=[t.close_date.isoformat() for t in trades],
|
||||
y=[t.close_rate for t in trades],
|
||||
x=trades["closets"],
|
||||
y=trades["close_rate"],
|
||||
mode='markers',
|
||||
name='trade_sell',
|
||||
marker=dict(
|
||||
|
|
Loading…
Reference in New Issue
Block a user