mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
merging datarehaul into scanning branch
This commit is contained in:
parent
c981ad4608
commit
4d472a0ea1
|
@ -71,7 +71,7 @@ class FreqaiDataKitchen:
|
|||
|
||||
self.data_drawer = data_drawer
|
||||
|
||||
def set_paths(self, metadata: dict, trained_timestamp: int = None,) -> None:
|
||||
def set_paths(self, pair: str, trained_timestamp: int = None,) -> None:
|
||||
"""
|
||||
Set the paths to the data for the present coin/botloop
|
||||
:params:
|
||||
|
@ -83,7 +83,7 @@ class FreqaiDataKitchen:
|
|||
str(self.freqai_config.get('identifier')))
|
||||
|
||||
self.data_path = Path(self.full_path / str("sub-train" + "-" +
|
||||
metadata['pair'].split("/")[0] +
|
||||
pair.split("/")[0] +
|
||||
str(trained_timestamp)))
|
||||
|
||||
return
|
||||
|
@ -796,12 +796,12 @@ class FreqaiDataKitchen:
|
|||
|
||||
return retrain, trained_timerange, data_load_timerange
|
||||
|
||||
def set_new_model_names(self, metadata: dict, trained_timerange: TimeRange):
|
||||
def set_new_model_names(self, pair: str, trained_timerange: TimeRange):
|
||||
|
||||
coin, _ = metadata['pair'].split("/")
|
||||
coin, _ = pair.split("/")
|
||||
# set the new data_path
|
||||
self.data_path = Path(self.full_path / str("sub-train" + "-" +
|
||||
metadata['pair'].split("/")[0] +
|
||||
pair.split("/")[0] +
|
||||
str(int(trained_timerange.stopts))))
|
||||
|
||||
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
|
||||
|
@ -918,7 +918,7 @@ class FreqaiDataKitchen:
|
|||
'trading_mode', 'spot'))
|
||||
|
||||
def get_base_and_corr_dataframes(self, timerange: TimeRange,
|
||||
metadata: dict) -> Tuple[Dict[Any, Any], Dict[Any, Any]]:
|
||||
pair: str) -> Tuple[Dict[Any, Any], Dict[Any, Any]]:
|
||||
"""
|
||||
Searches through our historic_data in memory and returns the dataframes relevant
|
||||
to the present pair.
|
||||
|
@ -927,6 +927,7 @@ class FreqaiDataKitchen:
|
|||
for training according to user defined train_period
|
||||
metadata: dict = strategy furnished pair metadata
|
||||
"""
|
||||
|
||||
with self.data_drawer.history_lock:
|
||||
corr_dataframes: Dict[Any, Any] = {}
|
||||
base_dataframes: Dict[Any, Any] = {}
|
||||
|
@ -940,7 +941,7 @@ class FreqaiDataKitchen:
|
|||
)
|
||||
if pairs:
|
||||
for p in pairs:
|
||||
if metadata['pair'] in p:
|
||||
if pair in p:
|
||||
continue # dont repeat anything from whitelist
|
||||
if p not in corr_dataframes:
|
||||
corr_dataframes[p] = {}
|
||||
|
@ -984,7 +985,7 @@ class FreqaiDataKitchen:
|
|||
def use_strategy_to_populate_indicators(self, strategy: IStrategy,
|
||||
corr_dataframes: dict,
|
||||
base_dataframes: dict,
|
||||
metadata: dict) -> DataFrame:
|
||||
pair: str) -> DataFrame:
|
||||
"""
|
||||
Use the user defined strategy for populating indicators during
|
||||
retrain
|
||||
|
@ -1003,19 +1004,19 @@ class FreqaiDataKitchen:
|
|||
|
||||
for tf in self.freqai_config.get("timeframes"):
|
||||
dataframe = strategy.populate_any_indicators(
|
||||
metadata,
|
||||
metadata['pair'],
|
||||
pair,
|
||||
pair,
|
||||
dataframe.copy(),
|
||||
tf,
|
||||
base_dataframes[tf],
|
||||
coin=metadata['pair'].split("/")[0] + "-"
|
||||
coin=pair.split("/")[0] + "-"
|
||||
)
|
||||
if pairs:
|
||||
for i in pairs:
|
||||
if metadata['pair'] in i:
|
||||
if pair in i:
|
||||
continue # dont repeat anything from whitelist
|
||||
dataframe = strategy.populate_any_indicators(
|
||||
metadata,
|
||||
pair,
|
||||
i,
|
||||
dataframe.copy(),
|
||||
tf,
|
||||
|
|
|
@ -63,6 +63,8 @@ class IFreqaiModel(ABC):
|
|||
self.lock = threading.Lock()
|
||||
self.follow_mode = self.freqai_info.get('follow_mode', False)
|
||||
self.identifier = self.freqai_info.get('identifier', 'no_id_provided')
|
||||
self.scanning = False
|
||||
self.ready_to_scan = False
|
||||
|
||||
def assert_config(self, config: Dict[str, Any]) -> None:
|
||||
|
||||
|
@ -91,17 +93,9 @@ class IFreqaiModel(ABC):
|
|||
# and we keep the flag self.training_on_separate_threaad in the current object to help
|
||||
# determine what the current pair will do
|
||||
if self.live:
|
||||
if (not self.training_on_separate_thread and
|
||||
self.data_drawer.pair_dict[metadata['pair']]['priority'] == 1):
|
||||
|
||||
self.dh = FreqaiDataKitchen(self.config, self.data_drawer,
|
||||
self.live, metadata["pair"])
|
||||
dh = self.start_live(dataframe, metadata, strategy, self.dh, trainable=True)
|
||||
else:
|
||||
# we will have at max 2 separate instances of the kitchen at once.
|
||||
self.dh_fg = FreqaiDataKitchen(self.config, self.data_drawer,
|
||||
self.live, metadata["pair"])
|
||||
dh = self.start_live(dataframe, metadata, strategy, self.dh_fg, trainable=False)
|
||||
self.dh = FreqaiDataKitchen(self.config, self.data_drawer,
|
||||
self.live, metadata["pair"])
|
||||
dh = self.start_live(dataframe, metadata, strategy, self.dh)
|
||||
|
||||
# For backtesting, each pair enters and then gets trained for each window along the
|
||||
# sliding window defined by "train_period" (training window) and "backtest_period"
|
||||
|
@ -114,8 +108,36 @@ class IFreqaiModel(ABC):
|
|||
dh = self.start_backtesting(dataframe, metadata, self.dh)
|
||||
|
||||
return self.return_values(dataframe, dh)
|
||||
# return (dh.full_predictions, dh.full_do_predict,
|
||||
# dh.full_target_mean, dh.full_target_std)
|
||||
|
||||
@threaded
|
||||
def start_scanning(self, strategy: IStrategy) -> None:
|
||||
while 1:
|
||||
for pair in self.config.get('exchange', {}).get('pair_whitelist'):
|
||||
if self.data_drawer.pair_dict[pair]['priority'] != 1:
|
||||
continue
|
||||
dh = FreqaiDataKitchen(self.config, self.data_drawer,
|
||||
self.live, pair)
|
||||
|
||||
(model_filename,
|
||||
trained_timestamp,
|
||||
_, _) = self.data_drawer.get_pair_dict_info(pair)
|
||||
|
||||
file_exists = False
|
||||
|
||||
# dh.set_paths(pair, trained_timestamp)
|
||||
file_exists = self.model_exists(pair,
|
||||
dh,
|
||||
trained_timestamp=trained_timestamp,
|
||||
model_filename=model_filename)
|
||||
|
||||
(self.retrain,
|
||||
new_trained_timerange,
|
||||
data_load_timerange) = dh.check_if_new_training_required(trained_timestamp)
|
||||
dh.set_paths(pair, new_trained_timerange.stopts)
|
||||
|
||||
if self.retrain or not file_exists:
|
||||
self.train_model_in_series(new_trained_timerange, pair,
|
||||
strategy, dh, data_load_timerange)
|
||||
|
||||
def start_backtesting(self, dataframe: DataFrame, metadata: dict,
|
||||
dh: FreqaiDataKitchen) -> FreqaiDataKitchen:
|
||||
|
@ -142,7 +164,7 @@ class IFreqaiModel(ABC):
|
|||
for tr_train, tr_backtest in zip(
|
||||
dh.training_timeranges, dh.backtesting_timeranges
|
||||
):
|
||||
(_, _, _, _) = self.data_drawer.get_pair_dict_info(metadata)
|
||||
(_, _, _, _) = self.data_drawer.get_pair_dict_info(metadata['pair'])
|
||||
gc.collect()
|
||||
dh.data = {} # clean the pair specific data between training window sliding
|
||||
self.training_timerange = tr_train
|
||||
|
@ -163,7 +185,7 @@ class IFreqaiModel(ABC):
|
|||
str(int(trained_timestamp.stopts))))
|
||||
if not self.model_exists(metadata["pair"], dh,
|
||||
trained_timestamp=trained_timestamp.stopts):
|
||||
self.model = self.train(dataframe_train, metadata, dh)
|
||||
self.model = self.train(dataframe_train, metadata['pair'], dh)
|
||||
self.data_drawer.pair_dict[metadata['pair']][
|
||||
'trained_timestamp'] = trained_timestamp.stopts
|
||||
dh.set_new_model_names(metadata, trained_timestamp)
|
||||
|
@ -184,8 +206,7 @@ class IFreqaiModel(ABC):
|
|||
return dh
|
||||
|
||||
def start_live(self, dataframe: DataFrame, metadata: dict,
|
||||
strategy: IStrategy, dh: FreqaiDataKitchen,
|
||||
trainable: bool) -> FreqaiDataKitchen:
|
||||
strategy: IStrategy, dh: FreqaiDataKitchen) -> FreqaiDataKitchen:
|
||||
"""
|
||||
The main broad execution for dry/live. This function will check if a retraining should be
|
||||
performed, and if so, retrain and reset the model.
|
||||
|
@ -203,10 +224,10 @@ class IFreqaiModel(ABC):
|
|||
self.data_drawer.update_follower_metadata()
|
||||
|
||||
# get the model metadata associated with the current pair
|
||||
(model_filename,
|
||||
(_,
|
||||
trained_timestamp,
|
||||
coin_first,
|
||||
return_null_array) = self.data_drawer.get_pair_dict_info(metadata)
|
||||
return_null_array) = self.data_drawer.get_pair_dict_info(metadata['pair'])
|
||||
|
||||
# if the metadata doesnt exist, the follower returns null arrays to strategy
|
||||
if self.follow_mode and return_null_array:
|
||||
|
@ -222,20 +243,18 @@ class IFreqaiModel(ABC):
|
|||
# if trainable, check if model needs training, if so compute new timerange,
|
||||
# then save model and metadata.
|
||||
# if not trainable, load existing data
|
||||
if (trainable or coin_first) and not self.follow_mode:
|
||||
file_exists = False
|
||||
|
||||
if trained_timestamp != 0: # historical model available
|
||||
dh.set_paths(metadata, trained_timestamp)
|
||||
file_exists = self.model_exists(metadata['pair'],
|
||||
dh,
|
||||
trained_timestamp=trained_timestamp,
|
||||
model_filename=model_filename)
|
||||
if not self.follow_mode:
|
||||
# if trained_timestamp != 0: # historical model available
|
||||
# dh.set_paths(metadata['pair'], trained_timestamp)
|
||||
# # file_exists = self.model_exists(metadata['pair'],
|
||||
# # dh,
|
||||
# # trained_timestamp=trained_timestamp,
|
||||
# # model_filename=model_filename)
|
||||
|
||||
(self.retrain,
|
||||
new_trained_timerange,
|
||||
data_load_timerange) = dh.check_if_new_training_required(trained_timestamp)
|
||||
dh.set_paths(metadata, new_trained_timerange.stopts)
|
||||
dh.set_paths(metadata['pair'], new_trained_timerange.stopts)
|
||||
|
||||
# download candle history if it is not already in memory
|
||||
if not self.data_drawer.historic_data:
|
||||
|
@ -246,20 +265,17 @@ class IFreqaiModel(ABC):
|
|||
dh.load_all_pair_histories(data_load_timerange)
|
||||
|
||||
# train the model on the trained timerange
|
||||
if self.retrain or not file_exists:
|
||||
if coin_first:
|
||||
self.train_model_in_series(new_trained_timerange, metadata,
|
||||
strategy, dh, data_load_timerange)
|
||||
else:
|
||||
self.training_on_separate_thread = True # acts like a lock
|
||||
self.retrain_model_on_separate_thread(new_trained_timerange,
|
||||
metadata, strategy,
|
||||
dh, data_load_timerange)
|
||||
if coin_first and not self.scanning:
|
||||
self.train_model_in_series(new_trained_timerange, metadata['pair'],
|
||||
strategy, dh, data_load_timerange)
|
||||
elif not coin_first and not self.scanning:
|
||||
self.scanning = True
|
||||
self.start_scanning(strategy)
|
||||
|
||||
elif not trainable and not self.follow_mode:
|
||||
logger.info(f'{metadata["pair"]} holds spot '
|
||||
f'{self.data_drawer.pair_dict[metadata["pair"]]["priority"]} '
|
||||
'in training queue')
|
||||
# elif not trainable and not self.follow_mode:
|
||||
# logger.info(f'{metadata["pair"]} holds spot '
|
||||
# f'{self.data_drawer.pair_dict[metadata["pair"]]["priority"]} '
|
||||
# 'in training queue')
|
||||
elif self.follow_mode:
|
||||
dh.set_paths(metadata, trained_timestamp)
|
||||
logger.info('FreqAI instance set to follow_mode, finding existing pair'
|
||||
|
@ -382,7 +398,7 @@ class IFreqaiModel(ABC):
|
|||
str(self.freqai_info.get('identifier')))
|
||||
|
||||
@threaded
|
||||
def retrain_model_on_separate_thread(self, new_trained_timerange: TimeRange, metadata: dict,
|
||||
def retrain_model_on_separate_thread(self, new_trained_timerange: TimeRange, pair: str,
|
||||
strategy: IStrategy, dh: FreqaiDataKitchen,
|
||||
data_load_timerange: TimeRange):
|
||||
"""
|
||||
|
@ -403,14 +419,14 @@ class IFreqaiModel(ABC):
|
|||
# metadata)
|
||||
|
||||
corr_dataframes, base_dataframes = dh.get_base_and_corr_dataframes(data_load_timerange,
|
||||
metadata)
|
||||
pair)
|
||||
|
||||
# protecting from common benign errors associated with grabbing new data from exchange:
|
||||
try:
|
||||
unfiltered_dataframe = dh.use_strategy_to_populate_indicators(strategy,
|
||||
corr_dataframes,
|
||||
base_dataframes,
|
||||
metadata)
|
||||
pair)
|
||||
unfiltered_dataframe = dh.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
|
||||
|
||||
except Exception as err:
|
||||
|
@ -420,23 +436,23 @@ class IFreqaiModel(ABC):
|
|||
return
|
||||
|
||||
try:
|
||||
model = self.train(unfiltered_dataframe, metadata, dh)
|
||||
model = self.train(unfiltered_dataframe, pair, dh)
|
||||
except ValueError:
|
||||
logger.warning('Value error encountered during training')
|
||||
self.training_on_separate_thread = False
|
||||
self.retrain = False
|
||||
return
|
||||
|
||||
self.data_drawer.pair_dict[metadata['pair']][
|
||||
self.data_drawer.pair_dict[pair][
|
||||
'trained_timestamp'] = new_trained_timerange.stopts
|
||||
dh.set_new_model_names(metadata, new_trained_timerange)
|
||||
dh.set_new_model_names(pair, new_trained_timerange)
|
||||
# logger.info('Training queue'
|
||||
# f'{sorted(self.data_drawer.pair_dict.items(), key=lambda item: item[1])}')
|
||||
|
||||
if self.data_drawer.pair_dict[metadata['pair']]['priority'] == 1:
|
||||
if self.data_drawer.pair_dict[pair]['priority'] == 1:
|
||||
with self.lock:
|
||||
self.data_drawer.pair_to_end_of_training_queue(metadata['pair'])
|
||||
dh.save_data(model, coin=metadata['pair'])
|
||||
self.data_drawer.pair_to_end_of_training_queue(pair)
|
||||
dh.save_data(model, coin=pair)
|
||||
self.training_on_separate_thread = False
|
||||
self.retrain = False
|
||||
|
||||
|
@ -446,7 +462,7 @@ class IFreqaiModel(ABC):
|
|||
|
||||
return
|
||||
|
||||
def train_model_in_series(self, new_trained_timerange: TimeRange, metadata: dict,
|
||||
def train_model_in_series(self, new_trained_timerange: TimeRange, pair: str,
|
||||
strategy: IStrategy, dh: FreqaiDataKitchen,
|
||||
data_load_timerange: TimeRange):
|
||||
"""
|
||||
|
@ -464,29 +480,32 @@ class IFreqaiModel(ABC):
|
|||
# corr_dataframes, base_dataframes = dh.load_pairs_histories(data_load_timerange,
|
||||
# metadata)
|
||||
corr_dataframes, base_dataframes = dh.get_base_and_corr_dataframes(data_load_timerange,
|
||||
metadata)
|
||||
pair)
|
||||
|
||||
unfiltered_dataframe = dh.use_strategy_to_populate_indicators(strategy,
|
||||
corr_dataframes,
|
||||
base_dataframes,
|
||||
metadata)
|
||||
pair)
|
||||
|
||||
unfiltered_dataframe = dh.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
|
||||
|
||||
model = self.train(unfiltered_dataframe, metadata, dh)
|
||||
model = self.train(unfiltered_dataframe, pair, dh)
|
||||
|
||||
self.data_drawer.pair_dict[metadata['pair']][
|
||||
self.data_drawer.pair_dict[pair][
|
||||
'trained_timestamp'] = new_trained_timerange.stopts
|
||||
dh.set_new_model_names(metadata, new_trained_timerange)
|
||||
self.data_drawer.pair_dict[metadata['pair']]['first'] = False
|
||||
dh.save_data(model, coin=metadata['pair'])
|
||||
dh.set_new_model_names(pair, new_trained_timerange)
|
||||
self.data_drawer.pair_dict[pair]['first'] = False
|
||||
if self.data_drawer.pair_dict[pair]['priority'] == 1 and self.scanning:
|
||||
with self.lock:
|
||||
self.data_drawer.pair_to_end_of_training_queue(pair)
|
||||
dh.save_data(model, coin=pair)
|
||||
self.retrain = False
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModlel.py for an example.
|
||||
|
||||
@abstractmethod
|
||||
def train(self, unfiltered_dataframe: DataFrame, metadata: dict, dh: FreqaiDataKitchen) -> Any:
|
||||
def train(self, unfiltered_dataframe: DataFrame, pair: str, dh: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datahandler
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
|
|
|
@ -532,7 +532,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||
"""
|
||||
return None
|
||||
|
||||
def populate_any_indicators(self, metadata: dict, pair: str, df: DataFrame, tf: str,
|
||||
def populate_any_indicators(self, basepair: str, pair: str, df: DataFrame, tf: str,
|
||||
informative: DataFrame = None, coin: str = "") -> DataFrame:
|
||||
"""
|
||||
Function designed to automatically generate, name and merge features
|
||||
|
|
Loading…
Reference in New Issue
Block a user