mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
Move check and add log warning
This commit is contained in:
parent
a9d5e04a43
commit
4daf0000c7
|
@ -241,6 +241,7 @@ class FreqaiDataKitchen:
|
|||
self.data["filter_drop_index_training"] = drop_index
|
||||
|
||||
else:
|
||||
filtered_df = self.check_pred_labels(filtered_df)
|
||||
# we are backtesting so we need to preserve row number to send back to strategy,
|
||||
# so now we use do_predict to avoid any prediction based on a NaN
|
||||
drop_index = pd.isnull(filtered_df).any(axis=1)
|
||||
|
@ -460,7 +461,7 @@ class FreqaiDataKitchen:
|
|||
|
||||
return df
|
||||
|
||||
def check_pred_labels(self, df_predictions: DataFrame) -> None:
|
||||
def check_pred_labels(self, df_predictions: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Check that prediction feature labels match training feature labels.
|
||||
:params:
|
||||
|
@ -468,9 +469,15 @@ class FreqaiDataKitchen:
|
|||
"""
|
||||
train_labels = self.data_dictionary["train_features"].columns
|
||||
pred_labels = df_predictions.columns
|
||||
if len(train_labels.difference(pred_labels)) != 0:
|
||||
self.data_dictionary["prediction_features"] = df_predictions[train_labels]
|
||||
return
|
||||
num_diffs = len(pred_labels.difference(train_labels))
|
||||
if num_diffs != 0:
|
||||
df_predictions = df_predictions[train_labels]
|
||||
logger.warning(
|
||||
f"Removed {num_diffs} features from prediction features, "
|
||||
f"these were likely considered constant values during most recent training."
|
||||
)
|
||||
|
||||
return df_predictions
|
||||
|
||||
def principal_component_analysis(self) -> None:
|
||||
"""
|
||||
|
|
|
@ -492,8 +492,6 @@ class IFreqaiModel(ABC):
|
|||
# ensure user is feeding the correct indicators to the model
|
||||
self.check_if_feature_list_matches_strategy(dk)
|
||||
|
||||
dk.check_pred_labels(dk.data_dictionary['prediction_features'])
|
||||
|
||||
if ft_params.get('inlier_metric_window', 0):
|
||||
dk.compute_inlier_metric(set_='predict')
|
||||
|
||||
|
|
|
@ -157,7 +157,7 @@ def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
|
|||
("CatboostClassifier", 6, "freqai_test_classifier")
|
||||
],
|
||||
)
|
||||
def test_start_backtesting(mocker, freqai_conf, model, num_files, strat):
|
||||
def test_start_backtesting(mocker, freqai_conf, model, num_files, strat, caplog):
|
||||
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
|
||||
freqai_conf['runmode'] = RunMode.BACKTEST
|
||||
Trade.use_db = False
|
||||
|
@ -182,13 +182,21 @@ def test_start_backtesting(mocker, freqai_conf, model, num_files, strat):
|
|||
|
||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||
for i in range(5):
|
||||
df[f'constant_{i}'] = i
|
||||
df.loc[:, f'%-constant_{i}'] = i
|
||||
|
||||
metadata = {"pair": "LTC/BTC"}
|
||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
|
||||
|
||||
assert len(model_folders) == num_files
|
||||
assert log_has_re(
|
||||
"Removed features ",
|
||||
caplog,
|
||||
)
|
||||
assert log_has_re(
|
||||
"Removed 5 features from prediction features, ",
|
||||
caplog,
|
||||
)
|
||||
Backtesting.cleanup()
|
||||
shutil.rmtree(Path(freqai.dk.full_path))
|
||||
|
||||
|
@ -210,8 +218,6 @@ def test_start_backtesting_subdaily_backtest_period(mocker, freqai_conf):
|
|||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||
|
||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||
for i in range(5):
|
||||
df[f'constant_{i}'] = i
|
||||
|
||||
metadata = {"pair": "LTC/BTC"}
|
||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||
|
@ -237,8 +243,6 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
|
|||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||
|
||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||
for i in range(5):
|
||||
df[f'constant_{i}'] = i
|
||||
|
||||
metadata = {"pair": "ADA/BTC"}
|
||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||
|
@ -262,8 +266,7 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
|
|||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||
|
||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||
for i in range(5):
|
||||
df[f'constant_{i}'] = i
|
||||
|
||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||
|
||||
assert log_has_re(
|
||||
|
@ -320,8 +323,7 @@ def test_follow_mode(mocker, freqai_conf):
|
|||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
|
||||
df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m')
|
||||
for i in range(5):
|
||||
df[f'constant_{i}'] = i
|
||||
|
||||
freqai.start_live(df, metadata, strategy, freqai.dk)
|
||||
|
||||
assert len(freqai.dk.return_dataframe.index) == 5702
|
||||
|
|
Loading…
Reference in New Issue
Block a user