mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 20:23:57 +00:00
Add inlier metric computation
This commit is contained in:
parent
16af10a5bc
commit
52ee7fc981
|
@ -655,6 +655,80 @@ class FreqaiDataKitchen:
|
||||||
|
|
||||||
return
|
return
|
||||||
|
|
||||||
|
def compute_inlier_metric(self) -> None:
|
||||||
|
"""
|
||||||
|
|
||||||
|
Compute inlier metric from backwards distance distributions.
|
||||||
|
This metric defines how well features from a timepoint fit
|
||||||
|
into previous timepoints.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import scipy.stats as ss
|
||||||
|
|
||||||
|
nmb_previous_points = self.data['InlierMetric_nmb_points']
|
||||||
|
weibull_percentile = self.data['InlierMetric_weib_perc']
|
||||||
|
|
||||||
|
train_ft_df = self.data_dictionary['train_features']
|
||||||
|
train_ft_df_reindexed = train_ft_df.reindex(
|
||||||
|
index=np.flip(train_ft_df.index)
|
||||||
|
)
|
||||||
|
|
||||||
|
pairwise = pd.DataFrame(
|
||||||
|
np.triu(
|
||||||
|
pairwise_distances(train_ft_df_reindexed, n_jobs=self.thread_count)
|
||||||
|
),
|
||||||
|
columns=train_ft_df_reindexed.index,
|
||||||
|
index=train_ft_df_reindexed.index
|
||||||
|
)
|
||||||
|
pairwise = pairwise.round(5)
|
||||||
|
|
||||||
|
column_labels = [
|
||||||
|
'{}{}'.format('d', i) for i in range(1, nmb_previous_points+1)
|
||||||
|
]
|
||||||
|
distances = pd.DataFrame(
|
||||||
|
columns=column_labels, index=train_ft_df.index
|
||||||
|
)
|
||||||
|
for index in train_ft_df.index[nmb_previous_points]:
|
||||||
|
current_row = pairwise.loc[[index]]
|
||||||
|
current_row_no_zeros = current_row.loc[
|
||||||
|
:, (current_row!=0).any(axis=0)
|
||||||
|
]
|
||||||
|
distances.loc[[index]] = current_row_no_zeros.iloc[
|
||||||
|
:, :nmb_previous_points
|
||||||
|
]
|
||||||
|
distances = distances.replace([np.inf, -np.inf], np.nan)
|
||||||
|
drop_index = pd.isnull(distances).any(1)
|
||||||
|
distances = distances[drop_index==0]
|
||||||
|
|
||||||
|
inliers = pd.DataFrame(index=distances.index)
|
||||||
|
for key in distances.keys():
|
||||||
|
current_distances = distances[key].dropna()
|
||||||
|
fit_params = ss.weibull_min.fit(current_distances)
|
||||||
|
cutoff = ss.weibull_min.ppf(weibull_percentile, *fit_params)
|
||||||
|
is_inlier = np.where(
|
||||||
|
current_distances<=cutoff, 1, 0
|
||||||
|
)
|
||||||
|
df_inlier = pd.DataFrame(
|
||||||
|
{key+'_IsInlier':is_inlier}, index=distances.index
|
||||||
|
)
|
||||||
|
inliers = pd.concat(
|
||||||
|
[inliers, df_inlier], axis=1
|
||||||
|
)
|
||||||
|
|
||||||
|
self.data_dictionary['train_features'] = pd.DataFrame(
|
||||||
|
data=inliers.sum(axis=1)/nmb_previous_points,
|
||||||
|
columns=['inlier_metric'],
|
||||||
|
index = train_ft_df.index
|
||||||
|
)
|
||||||
|
|
||||||
|
percent_outliers = np.round(
|
||||||
|
100*(1-self.data_dictionary['iniler_metric'].sum()/
|
||||||
|
len(train_ft_df.index)), 2
|
||||||
|
)
|
||||||
|
logger.info('{percent_outliers}%% of data points were identified as outliers')
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
def find_features(self, dataframe: DataFrame) -> None:
|
def find_features(self, dataframe: DataFrame) -> None:
|
||||||
"""
|
"""
|
||||||
Find features in the strategy provided dataframe
|
Find features in the strategy provided dataframe
|
||||||
|
|
Loading…
Reference in New Issue
Block a user