mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-11 18:53:54 +00:00
Fix pandas deprecation warnings from freqAI
This commit is contained in:
parent
c53ff94b8e
commit
59cfde3767
|
@ -210,7 +210,7 @@ class FreqaiDataKitchen:
|
||||||
filtered_df = unfiltered_df.filter(training_feature_list, axis=1)
|
filtered_df = unfiltered_df.filter(training_feature_list, axis=1)
|
||||||
filtered_df = filtered_df.replace([np.inf, -np.inf], np.nan)
|
filtered_df = filtered_df.replace([np.inf, -np.inf], np.nan)
|
||||||
|
|
||||||
drop_index = pd.isnull(filtered_df).any(1) # get the rows that have NaNs,
|
drop_index = pd.isnull(filtered_df).any(axis=1) # get the rows that have NaNs,
|
||||||
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
|
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
|
||||||
if (training_filter):
|
if (training_filter):
|
||||||
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
|
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
|
||||||
|
@ -221,7 +221,7 @@ class FreqaiDataKitchen:
|
||||||
# about removing any row with NaNs
|
# about removing any row with NaNs
|
||||||
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
|
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
|
||||||
labels = unfiltered_df.filter(label_list, axis=1)
|
labels = unfiltered_df.filter(label_list, axis=1)
|
||||||
drop_index_labels = pd.isnull(labels).any(1)
|
drop_index_labels = pd.isnull(labels).any(axis=1)
|
||||||
drop_index_labels = drop_index_labels.replace(True, 1).replace(False, 0)
|
drop_index_labels = drop_index_labels.replace(True, 1).replace(False, 0)
|
||||||
dates = unfiltered_df['date']
|
dates = unfiltered_df['date']
|
||||||
filtered_df = filtered_df[
|
filtered_df = filtered_df[
|
||||||
|
@ -249,7 +249,7 @@ class FreqaiDataKitchen:
|
||||||
else:
|
else:
|
||||||
# we are backtesting so we need to preserve row number to send back to strategy,
|
# we are backtesting so we need to preserve row number to send back to strategy,
|
||||||
# so now we use do_predict to avoid any prediction based on a NaN
|
# so now we use do_predict to avoid any prediction based on a NaN
|
||||||
drop_index = pd.isnull(filtered_df).any(1)
|
drop_index = pd.isnull(filtered_df).any(axis=1)
|
||||||
self.data["filter_drop_index_prediction"] = drop_index
|
self.data["filter_drop_index_prediction"] = drop_index
|
||||||
filtered_df.fillna(0, inplace=True)
|
filtered_df.fillna(0, inplace=True)
|
||||||
# replacing all NaNs with zeros to avoid issues in 'prediction', but any prediction
|
# replacing all NaNs with zeros to avoid issues in 'prediction', but any prediction
|
||||||
|
@ -808,7 +808,7 @@ class FreqaiDataKitchen:
|
||||||
:, :no_prev_pts
|
:, :no_prev_pts
|
||||||
]
|
]
|
||||||
distances = distances.replace([np.inf, -np.inf], np.nan)
|
distances = distances.replace([np.inf, -np.inf], np.nan)
|
||||||
drop_index = pd.isnull(distances).any(1)
|
drop_index = pd.isnull(distances).any(axis=1)
|
||||||
distances = distances[drop_index == 0]
|
distances = distances[drop_index == 0]
|
||||||
|
|
||||||
inliers = pd.DataFrame(index=distances.index)
|
inliers = pd.DataFrame(index=distances.index)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user