Merge pull request #8903 from Yinon-Polak/freqai-pytorch-bugfixes

Freqai pytorch bugfixes
This commit is contained in:
Robert Caulk 2023-08-15 16:48:44 +02:00 committed by GitHub
commit 5d3f3fb39f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 62 additions and 79 deletions

View File

@ -100,12 +100,12 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
#### trainer_kwargs
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters.model_kwargs` sub dictionary**
| `max_iters` | The number of training iterations to run. iteration here refers to the number of times we call self.optimizer.step(). used to calculate n_epochs. <br> **Datatype:** int. <br> Default: `100`.
| `batch_size` | The size of the batches to use during training.. <br> **Datatype:** int. <br> Default: `64`.
| `max_n_eval_batches` | The maximum number batches to use for evaluation.. <br> **Datatype:** int, optional. <br> Default: `None`.
| Parameter | Description |
|--------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters.model_kwargs` sub dictionary**
| `n_epochs` | The `n_epochs` parameter is a crucial setting in the PyTorch training loop that determines the number of times the entire training dataset will be used to update the model's parameters. An epoch represents one full pass through the entire training dataset. Overrides `n_steps`. Either `n_epochs` or `n_steps` must be set. <br><br> **Datatype:** int. optional. <br> Default: `10`.
| `n_steps` | An alternative way of setting `n_epochs` - the number of training iterations to run. Iteration here refer to the number of times we call `optimizer.step()`. Ignored if `n_epochs` is set. A simplified version of the function: <br><br> n_epochs = n_steps / (n_obs / batch_size) <br><br> The motivation here is that `n_steps` is easier to optimize and keep stable across different n_obs - the number of data points. <br> <br> **Datatype:** int. optional. <br> Default: `None`.
| `batch_size` | The size of the batches to use during training. <br><br> **Datatype:** int. <br> Default: `64`.
### Additional parameters

View File

@ -26,9 +26,9 @@ class PyTorchMLPClassifier(BasePyTorchClassifier):
"model_training_parameters" : {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 5000,
"n_steps": 5000,
"batch_size": 64,
"max_n_eval_batches": null,
"n_epochs": null,
},
"model_kwargs": {
"hidden_dim": 512,

View File

@ -27,9 +27,9 @@ class PyTorchMLPRegressor(BasePyTorchRegressor):
"model_training_parameters" : {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 5000,
"n_steps": 5000,
"batch_size": 64,
"max_n_eval_batches": null,
"n_epochs": null,
},
"model_kwargs": {
"hidden_dim": 512,

View File

@ -30,9 +30,9 @@ class PyTorchTransformerRegressor(BasePyTorchRegressor):
"model_training_parameters" : {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 5000,
"n_steps": 5000,
"batch_size": 64,
"max_n_eval_batches": null
"n_epochs": null
},
"model_kwargs": {
"hidden_dim": 512,

View File

@ -1,5 +1,4 @@
from abc import ABC, abstractmethod
from typing import Optional
import pandas as pd
import torch
@ -12,14 +11,14 @@ class PyTorchDataConvertor(ABC):
"""
@abstractmethod
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> torch.Tensor:
def convert_x(self, df: pd.DataFrame, device: str) -> torch.Tensor:
"""
:param df: "*_features" dataframe.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
"""
@abstractmethod
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> torch.Tensor:
def convert_y(self, df: pd.DataFrame, device: str) -> torch.Tensor:
"""
:param df: "*_labels" dataframe.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
@ -33,8 +32,8 @@ class DefaultPyTorchDataConvertor(PyTorchDataConvertor):
def __init__(
self,
target_tensor_type: Optional[torch.dtype] = None,
squeeze_target_tensor: bool = False
target_tensor_type: torch.dtype = torch.float32,
squeeze_target_tensor: bool = False,
):
"""
:param target_tensor_type: type of target tensor, for classification use
@ -45,23 +44,14 @@ class DefaultPyTorchDataConvertor(PyTorchDataConvertor):
self._target_tensor_type = target_tensor_type
self._squeeze_target_tensor = squeeze_target_tensor
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> torch.Tensor:
x = torch.from_numpy(df.values).float()
if device:
x = x.to(device)
def convert_x(self, df: pd.DataFrame, device: str) -> torch.Tensor:
numpy_arrays = df.values
x = torch.tensor(numpy_arrays, device=device, dtype=torch.float32)
return x
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> torch.Tensor:
y = torch.from_numpy(df.values)
if self._target_tensor_type:
y = y.to(self._target_tensor_type)
def convert_y(self, df: pd.DataFrame, device: str) -> torch.Tensor:
numpy_arrays = df.values
y = torch.tensor(numpy_arrays, device=device, dtype=self._target_tensor_type)
if self._squeeze_target_tensor:
y = y.squeeze()
if device:
y = y.to(device)
return y

View File

@ -1,5 +1,4 @@
import logging
import math
from pathlib import Path
from typing import Any, Dict, List, Optional
@ -40,23 +39,27 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
state_dict and model_meta_data saved by self.save() method.
:param model_meta_data: Additional metadata about the model (optional).
:param data_convertor: convertor from pd.DataFrame to torch.tensor.
:param max_iters: The number of training iterations to run.
iteration here refers to the number of times we call
self.optimizer.step(). used to calculate n_epochs.
:param n_steps: used to calculate n_epochs. The number of training iterations to run.
iteration here refers to the number of times optimizer.step() is called.
ignored if n_epochs is set.
:param n_epochs: The maximum number batches to use for evaluation.
:param batch_size: The size of the batches to use during training.
:param max_n_eval_batches: The maximum number batches to use for evaluation.
"""
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.model_meta_data = model_meta_data
self.device = device
self.max_iters: int = kwargs.get("max_iters", 100)
self.n_epochs: Optional[int] = kwargs.get("n_epochs", 10)
self.n_steps: Optional[int] = kwargs.get("n_steps", None)
if self.n_steps is None and not self.n_epochs:
raise Exception("Either `n_steps` or `n_epochs` should be set.")
self.batch_size: int = kwargs.get("batch_size", 64)
self.max_n_eval_batches: Optional[int] = kwargs.get("max_n_eval_batches", None)
self.data_convertor = data_convertor
self.window_size: int = window_size
self.tb_logger = tb_logger
self.test_batch_counter = 0
def fit(self, data_dictionary: Dict[str, pd.DataFrame], splits: List[str]):
"""
@ -72,55 +75,46 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
backpropagation.
- Updates the model's parameters using an optimizer.
"""
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary, splits)
epochs = self.calc_n_epochs(
n_obs=len(data_dictionary["train_features"]),
batch_size=self.batch_size,
n_iters=self.max_iters
)
self.model.train()
for epoch in range(1, epochs + 1):
for i, batch_data in enumerate(data_loaders_dictionary["train"]):
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary, splits)
n_obs = len(data_dictionary["train_features"])
n_epochs = self.n_epochs or self.calc_n_epochs(n_obs=n_obs)
batch_counter = 0
for _ in range(n_epochs):
for _, batch_data in enumerate(data_loaders_dictionary["train"]):
xb, yb = batch_data
xb.to(self.device)
yb.to(self.device)
xb = xb.to(self.device)
yb = yb.to(self.device)
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
self.optimizer.zero_grad(set_to_none=True)
loss.backward()
self.optimizer.step()
self.tb_logger.log_scalar("train_loss", loss.item(), i)
self.tb_logger.log_scalar("train_loss", loss.item(), batch_counter)
batch_counter += 1
# evaluation
if "test" in splits:
self.estimate_loss(
data_loaders_dictionary,
self.max_n_eval_batches,
"test"
)
self.estimate_loss(data_loaders_dictionary, "test")
@torch.no_grad()
def estimate_loss(
self,
data_loader_dictionary: Dict[str, DataLoader],
max_n_eval_batches: Optional[int],
split: str,
) -> None:
self.model.eval()
n_batches = 0
for i, batch_data in enumerate(data_loader_dictionary[split]):
if max_n_eval_batches and i > max_n_eval_batches:
n_batches += 1
break
for _, batch_data in enumerate(data_loader_dictionary[split]):
xb, yb = batch_data
xb.to(self.device)
yb.to(self.device)
xb = xb.to(self.device)
yb = yb.to(self.device)
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
self.tb_logger.log_scalar(f"{split}_loss", loss.item(), i)
self.tb_logger.log_scalar(f"{split}_loss", loss.item(), self.test_batch_counter)
self.test_batch_counter += 1
self.model.train()
@ -148,31 +142,30 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
return data_loader_dictionary
@staticmethod
def calc_n_epochs(n_obs: int, batch_size: int, n_iters: int) -> int:
def calc_n_epochs(self, n_obs: int) -> int:
"""
Calculates the number of epochs required to reach the maximum number
of iterations specified in the model training parameters.
the motivation here is that `max_iters` is easier to optimize and keep stable,
the motivation here is that `n_steps` is easier to optimize and keep stable,
across different n_obs - the number of data points.
"""
assert isinstance(self.n_steps, int), "Either `n_steps` or `n_epochs` should be set."
n_batches = n_obs // self.batch_size
n_epochs = min(self.n_steps // n_batches, 1)
if n_epochs <= 10:
logger.warning(
f"Setting low n_epochs: {n_epochs}. "
f"Please consider increasing `n_steps` hyper-parameter."
)
n_batches = math.ceil(n_obs // batch_size)
epochs = math.ceil(n_iters // n_batches)
if epochs <= 10:
logger.warning("User set `max_iters` in such a way that the trainer will only perform "
f" {epochs} epochs. Please consider increasing this value accordingly")
if epochs <= 1:
logger.warning("Epochs set to 1. Please review your `max_iters` value")
epochs = 1
return epochs
return n_epochs
def save(self, path: Path):
"""
- Saving any nn.Module state_dict
- Saving model_meta_data, this dict should contain any additional data that the
user needs to store. e.g class_names for classification models.
user needs to store. e.g. class_names for classification models.
"""
torch.save({

View File

@ -97,9 +97,9 @@ def mock_pytorch_mlp_model_training_parameters() -> Dict[str, Any]:
return {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 1,
"n_steps": None,
"batch_size": 64,
"max_n_eval_batches": 1,
"n_epochs": 1,
},
"model_kwargs": {
"hidden_dim": 32,