mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 02:12:01 +00:00
pass metadata dictionary to feature_engineering_* and set_freqai_targets functions. Add doc
This commit is contained in:
parent
55850a5ccd
commit
5da60b718d
|
@ -28,6 +28,10 @@ It is advisable to start from the template `feature_engineering_*` functions in
|
|||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair/timeframe/period with:
|
||||
|
||||
`metadata["pair"]` `metadata["tf"]` `metadata["period"]`
|
||||
|
||||
:param df: strategy dataframe which will receive the features
|
||||
:param period: period of the indicator - usage example:
|
||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||
|
@ -75,6 +79,10 @@ It is advisable to start from the template `feature_engineering_*` functions in
|
|||
Features defined here will *not* be automatically duplicated on user defined
|
||||
`indicator_periods_candles`
|
||||
|
||||
Access metadata such as the current pair/timeframe with:
|
||||
|
||||
`metadata["pair"]` `metadata["tf"]`
|
||||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
:param df: strategy dataframe which will receive the features
|
||||
|
@ -98,6 +106,10 @@ It is advisable to start from the template `feature_engineering_*` functions in
|
|||
This function is a good place for any feature that should not be auto-expanded upon
|
||||
(e.g. day of the week).
|
||||
|
||||
Access metadata such as the current pair with:
|
||||
|
||||
`metadata["pair"]`
|
||||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
:param df: strategy dataframe which will receive the features
|
||||
|
@ -113,6 +125,10 @@ It is advisable to start from the template `feature_engineering_*` functions in
|
|||
Required function to set the targets for the model.
|
||||
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair with:
|
||||
|
||||
`metadata["pair"]`
|
||||
|
||||
:param df: strategy dataframe which will receive the targets
|
||||
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||
"""
|
||||
|
@ -161,6 +177,19 @@ You can ask for each of the defined features to be included also for informative
|
|||
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
|
||||
$= 3 * 3 * 3 * 2 * 2 = 108$.
|
||||
|
||||
|
||||
### Gain finer control over `feature_engineering_*` functions with `metadata`
|
||||
|
||||
All `feature_engineering_*` and `set_freqai_targets()` functions are passed a `metadata` dictionary which contains information about the `pair`, `tf` (timeframe), and `period` that FreqAI is automating for feature building. As such, a user can use `metadata` inside `feature_engineering_*` functions as criteria for blocking/reserving features for certain timeframes, periods, pairs etc.
|
||||
|
||||
```py
|
||||
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
|
||||
if metadata["tf"] == "1h":
|
||||
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||
```
|
||||
|
||||
This will block `ta.ROC()` from being added to any timeframes other than `"1h"`.
|
||||
|
||||
### Returning additional info from training
|
||||
|
||||
Important metrics can be returned to the strategy at the end of each model training by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside the custom prediction model class.
|
||||
|
|
|
@ -1247,17 +1247,21 @@ class FreqaiDataKitchen:
|
|||
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||
|
||||
for tf in tfs:
|
||||
metadata = {"pair": pair, "tf": tf}
|
||||
informative_df = self.get_pair_data_for_features(
|
||||
pair, tf, strategy, corr_dataframes, base_dataframes, is_corr_pairs)
|
||||
informative_copy = informative_df.copy()
|
||||
|
||||
for t in self.freqai_config["feature_parameters"]["indicator_periods_candles"]:
|
||||
metadata["period"] = t
|
||||
df_features = strategy.feature_engineering_expand_all(
|
||||
informative_copy.copy(), t)
|
||||
informative_copy.copy(), t, metadata=metadata)
|
||||
suffix = f"{t}"
|
||||
informative_df = self.merge_features(informative_df, df_features, tf, tf, suffix)
|
||||
|
||||
generic_df = strategy.feature_engineering_expand_basic(informative_copy.copy())
|
||||
metadata.pop("period")
|
||||
generic_df = strategy.feature_engineering_expand_basic(
|
||||
informative_copy.copy(), metadata=metadata)
|
||||
suffix = "gen"
|
||||
|
||||
informative_df = self.merge_features(informative_df, generic_df, tf, tf, suffix)
|
||||
|
@ -1326,8 +1330,8 @@ class FreqaiDataKitchen:
|
|||
"include_corr_pairlist", [])
|
||||
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
|
||||
corr_dataframes, base_dataframes)
|
||||
|
||||
dataframe = strategy.feature_engineering_standard(dataframe.copy())
|
||||
metadata = {"pair": pair}
|
||||
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
|
||||
# ensure corr pairs are always last
|
||||
for corr_pair in corr_pairs:
|
||||
if pair == corr_pair:
|
||||
|
@ -1336,7 +1340,7 @@ class FreqaiDataKitchen:
|
|||
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
|
||||
corr_dataframes, base_dataframes, True)
|
||||
|
||||
dataframe = strategy.set_freqai_targets(dataframe.copy())
|
||||
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
|
||||
|
||||
self.get_unique_classes_from_labels(dataframe)
|
||||
|
||||
|
|
|
@ -58,6 +58,10 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair/timeframe/period with:
|
||||
|
||||
`metadata["pair"]` `metadata["tf"]` `metadata["period"]`
|
||||
|
||||
More details on how these config defined parameters accelerate feature engineering
|
||||
in the documentation at:
|
||||
|
||||
|
@ -114,6 +118,10 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair/timeframe with:
|
||||
|
||||
`metadata["pair"]` `metadata["tf"]`
|
||||
|
||||
More details on how these config defined parameters accelerate feature engineering
|
||||
in the documentation at:
|
||||
|
||||
|
@ -144,6 +152,10 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair with:
|
||||
|
||||
`metadata["pair"]`
|
||||
|
||||
More details about feature engineering available:
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||
|
@ -161,6 +173,10 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
Required function to set the targets for the model.
|
||||
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair with:
|
||||
|
||||
`metadata["pair"]`
|
||||
|
||||
More details about feature engineering available:
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||
|
|
Loading…
Reference in New Issue
Block a user