mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 04:03:55 +00:00
pass metadata dictionary to feature_engineering_* and set_freqai_targets functions. Add doc
This commit is contained in:
parent
55850a5ccd
commit
5da60b718d
|
@ -28,6 +28,10 @@ It is advisable to start from the template `feature_engineering_*` functions in
|
||||||
|
|
||||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
Access metadata such as the current pair/timeframe/period with:
|
||||||
|
|
||||||
|
`metadata["pair"]` `metadata["tf"]` `metadata["period"]`
|
||||||
|
|
||||||
:param df: strategy dataframe which will receive the features
|
:param df: strategy dataframe which will receive the features
|
||||||
:param period: period of the indicator - usage example:
|
:param period: period of the indicator - usage example:
|
||||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
|
@ -75,6 +79,10 @@ It is advisable to start from the template `feature_engineering_*` functions in
|
||||||
Features defined here will *not* be automatically duplicated on user defined
|
Features defined here will *not* be automatically duplicated on user defined
|
||||||
`indicator_periods_candles`
|
`indicator_periods_candles`
|
||||||
|
|
||||||
|
Access metadata such as the current pair/timeframe with:
|
||||||
|
|
||||||
|
`metadata["pair"]` `metadata["tf"]`
|
||||||
|
|
||||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
:param df: strategy dataframe which will receive the features
|
:param df: strategy dataframe which will receive the features
|
||||||
|
@ -98,6 +106,10 @@ It is advisable to start from the template `feature_engineering_*` functions in
|
||||||
This function is a good place for any feature that should not be auto-expanded upon
|
This function is a good place for any feature that should not be auto-expanded upon
|
||||||
(e.g. day of the week).
|
(e.g. day of the week).
|
||||||
|
|
||||||
|
Access metadata such as the current pair with:
|
||||||
|
|
||||||
|
`metadata["pair"]`
|
||||||
|
|
||||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
:param df: strategy dataframe which will receive the features
|
:param df: strategy dataframe which will receive the features
|
||||||
|
@ -113,6 +125,10 @@ It is advisable to start from the template `feature_engineering_*` functions in
|
||||||
Required function to set the targets for the model.
|
Required function to set the targets for the model.
|
||||||
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||||
|
|
||||||
|
Access metadata such as the current pair with:
|
||||||
|
|
||||||
|
`metadata["pair"]`
|
||||||
|
|
||||||
:param df: strategy dataframe which will receive the targets
|
:param df: strategy dataframe which will receive the targets
|
||||||
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||||
"""
|
"""
|
||||||
|
@ -161,6 +177,19 @@ You can ask for each of the defined features to be included also for informative
|
||||||
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
|
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
|
||||||
$= 3 * 3 * 3 * 2 * 2 = 108$.
|
$= 3 * 3 * 3 * 2 * 2 = 108$.
|
||||||
|
|
||||||
|
|
||||||
|
### Gain finer control over `feature_engineering_*` functions with `metadata`
|
||||||
|
|
||||||
|
All `feature_engineering_*` and `set_freqai_targets()` functions are passed a `metadata` dictionary which contains information about the `pair`, `tf` (timeframe), and `period` that FreqAI is automating for feature building. As such, a user can use `metadata` inside `feature_engineering_*` functions as criteria for blocking/reserving features for certain timeframes, periods, pairs etc.
|
||||||
|
|
||||||
|
```py
|
||||||
|
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
|
||||||
|
if metadata["tf"] == "1h":
|
||||||
|
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||||
|
```
|
||||||
|
|
||||||
|
This will block `ta.ROC()` from being added to any timeframes other than `"1h"`.
|
||||||
|
|
||||||
### Returning additional info from training
|
### Returning additional info from training
|
||||||
|
|
||||||
Important metrics can be returned to the strategy at the end of each model training by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside the custom prediction model class.
|
Important metrics can be returned to the strategy at the end of each model training by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside the custom prediction model class.
|
||||||
|
|
|
@ -1247,17 +1247,21 @@ class FreqaiDataKitchen:
|
||||||
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
|
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||||
|
|
||||||
for tf in tfs:
|
for tf in tfs:
|
||||||
|
metadata = {"pair": pair, "tf": tf}
|
||||||
informative_df = self.get_pair_data_for_features(
|
informative_df = self.get_pair_data_for_features(
|
||||||
pair, tf, strategy, corr_dataframes, base_dataframes, is_corr_pairs)
|
pair, tf, strategy, corr_dataframes, base_dataframes, is_corr_pairs)
|
||||||
informative_copy = informative_df.copy()
|
informative_copy = informative_df.copy()
|
||||||
|
|
||||||
for t in self.freqai_config["feature_parameters"]["indicator_periods_candles"]:
|
for t in self.freqai_config["feature_parameters"]["indicator_periods_candles"]:
|
||||||
|
metadata["period"] = t
|
||||||
df_features = strategy.feature_engineering_expand_all(
|
df_features = strategy.feature_engineering_expand_all(
|
||||||
informative_copy.copy(), t)
|
informative_copy.copy(), t, metadata=metadata)
|
||||||
suffix = f"{t}"
|
suffix = f"{t}"
|
||||||
informative_df = self.merge_features(informative_df, df_features, tf, tf, suffix)
|
informative_df = self.merge_features(informative_df, df_features, tf, tf, suffix)
|
||||||
|
|
||||||
generic_df = strategy.feature_engineering_expand_basic(informative_copy.copy())
|
metadata.pop("period")
|
||||||
|
generic_df = strategy.feature_engineering_expand_basic(
|
||||||
|
informative_copy.copy(), metadata=metadata)
|
||||||
suffix = "gen"
|
suffix = "gen"
|
||||||
|
|
||||||
informative_df = self.merge_features(informative_df, generic_df, tf, tf, suffix)
|
informative_df = self.merge_features(informative_df, generic_df, tf, tf, suffix)
|
||||||
|
@ -1326,8 +1330,8 @@ class FreqaiDataKitchen:
|
||||||
"include_corr_pairlist", [])
|
"include_corr_pairlist", [])
|
||||||
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
|
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
|
||||||
corr_dataframes, base_dataframes)
|
corr_dataframes, base_dataframes)
|
||||||
|
metadata = {"pair": pair}
|
||||||
dataframe = strategy.feature_engineering_standard(dataframe.copy())
|
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
|
||||||
# ensure corr pairs are always last
|
# ensure corr pairs are always last
|
||||||
for corr_pair in corr_pairs:
|
for corr_pair in corr_pairs:
|
||||||
if pair == corr_pair:
|
if pair == corr_pair:
|
||||||
|
@ -1336,7 +1340,7 @@ class FreqaiDataKitchen:
|
||||||
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
|
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
|
||||||
corr_dataframes, base_dataframes, True)
|
corr_dataframes, base_dataframes, True)
|
||||||
|
|
||||||
dataframe = strategy.set_freqai_targets(dataframe.copy())
|
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
|
||||||
|
|
||||||
self.get_unique_classes_from_labels(dataframe)
|
self.get_unique_classes_from_labels(dataframe)
|
||||||
|
|
||||||
|
|
|
@ -58,6 +58,10 @@ class FreqaiExampleStrategy(IStrategy):
|
||||||
|
|
||||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
Access metadata such as the current pair/timeframe/period with:
|
||||||
|
|
||||||
|
`metadata["pair"]` `metadata["tf"]` `metadata["period"]`
|
||||||
|
|
||||||
More details on how these config defined parameters accelerate feature engineering
|
More details on how these config defined parameters accelerate feature engineering
|
||||||
in the documentation at:
|
in the documentation at:
|
||||||
|
|
||||||
|
@ -114,6 +118,10 @@ class FreqaiExampleStrategy(IStrategy):
|
||||||
|
|
||||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
Access metadata such as the current pair/timeframe with:
|
||||||
|
|
||||||
|
`metadata["pair"]` `metadata["tf"]`
|
||||||
|
|
||||||
More details on how these config defined parameters accelerate feature engineering
|
More details on how these config defined parameters accelerate feature engineering
|
||||||
in the documentation at:
|
in the documentation at:
|
||||||
|
|
||||||
|
@ -144,6 +152,10 @@ class FreqaiExampleStrategy(IStrategy):
|
||||||
|
|
||||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
Access metadata such as the current pair with:
|
||||||
|
|
||||||
|
`metadata["pair"]`
|
||||||
|
|
||||||
More details about feature engineering available:
|
More details about feature engineering available:
|
||||||
|
|
||||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||||
|
@ -161,6 +173,10 @@ class FreqaiExampleStrategy(IStrategy):
|
||||||
Required function to set the targets for the model.
|
Required function to set the targets for the model.
|
||||||
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||||
|
|
||||||
|
Access metadata such as the current pair with:
|
||||||
|
|
||||||
|
`metadata["pair"]`
|
||||||
|
|
||||||
More details about feature engineering available:
|
More details about feature engineering available:
|
||||||
|
|
||||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||||
|
|
Loading…
Reference in New Issue
Block a user