mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
parent
cf044d166e
commit
5fce7f3b22
|
@ -168,6 +168,26 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
|
|||
return trades
|
||||
|
||||
|
||||
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
|
||||
"""
|
||||
Calculate market change based on "column".
|
||||
Calculation is done by taking the first non-null and the last non-null element of each column
|
||||
and calculating the pctchange as "(last - first) / first".
|
||||
Then the results per pair are combined as mean.
|
||||
|
||||
:param data: Dict of Dataframes, dict key should be pair.
|
||||
:param column: Column in the original dataframes to use
|
||||
:return:
|
||||
"""
|
||||
tmp_means = []
|
||||
for pair, df in data.items():
|
||||
start = df[column].dropna().iloc[0]
|
||||
end = df[column].dropna().iloc[-1]
|
||||
tmp_means.append((end - start) / start)
|
||||
|
||||
return np.mean(tmp_means)
|
||||
|
||||
|
||||
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
|
||||
column: str = "close") -> pd.DataFrame:
|
||||
"""
|
||||
|
|
|
@ -8,7 +8,7 @@ from pandas import DataFrame
|
|||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown, calculate_market_change
|
||||
from freqtrade.misc import file_dump_json
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -208,6 +208,8 @@ def generate_backtest_stats(config: Dict, btdata: Dict[str, DataFrame],
|
|||
stake_currency = config['stake_currency']
|
||||
max_open_trades = config['max_open_trades']
|
||||
result: Dict[str, Any] = {'strategy': {}}
|
||||
market_change = calculate_market_change(btdata, 'close')
|
||||
|
||||
for strategy, results in all_results.items():
|
||||
|
||||
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
|
@ -232,8 +234,9 @@ def generate_backtest_stats(config: Dict, btdata: Dict[str, DataFrame],
|
|||
'backtest_end': max_date.datetime,
|
||||
'backtest_end_ts': max_date.timestamp,
|
||||
'backtest_days': backtest_days,
|
||||
'trades_per_day': round(len(results) / backtest_days, 2) if backtest_days > 0 else None
|
||||
}
|
||||
'trades_per_day': round(len(results) / backtest_days, 2) if backtest_days > 0 else None,
|
||||
'market_change': market_change,
|
||||
}
|
||||
result['strategy'][strategy] = strat_stats
|
||||
|
||||
try:
|
||||
|
@ -348,11 +351,12 @@ def text_table_add_metrics(strategy_results: Dict) -> str:
|
|||
('Max Drawdown', f"{round(strategy_results['max_drawdown'] * 100, 2)}%"),
|
||||
('Drawdown Start', strategy_results['drawdown_start'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('Drawdown End', strategy_results['drawdown_end'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('Market change', f"{round(strategy_results['market_change'] * 100, 2)}%"),
|
||||
]
|
||||
|
||||
return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl")
|
||||
else:
|
||||
return
|
||||
return ''
|
||||
|
||||
|
||||
def show_backtest_results(config: Dict, backtest_stats: Dict):
|
||||
|
|
|
@ -8,6 +8,7 @@ from pandas import DataFrame, DateOffset, Timestamp, to_datetime
|
|||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
|
||||
analyze_trade_parallelism,
|
||||
calculate_market_change,
|
||||
calculate_max_drawdown,
|
||||
combine_dataframes_with_mean,
|
||||
create_cum_profit,
|
||||
|
@ -135,6 +136,14 @@ def test_load_trades(default_conf, mocker):
|
|||
assert bt_mock.call_count == 0
|
||||
|
||||
|
||||
def test_calculate_market_change(testdatadir):
|
||||
pairs = ["ETH/BTC", "ADA/BTC"]
|
||||
data = load_data(datadir=testdatadir, pairs=pairs, timeframe='5m')
|
||||
result = calculate_market_change(data)
|
||||
assert isinstance(result, float)
|
||||
assert pytest.approx(result) == 0.00955514
|
||||
|
||||
|
||||
def test_combine_dataframes_with_mean(testdatadir):
|
||||
pairs = ["ETH/BTC", "ADA/BTC"]
|
||||
data = load_data(datadir=testdatadir, pairs=pairs, timeframe='5m')
|
||||
|
|
Loading…
Reference in New Issue
Block a user