mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 04:03:55 +00:00
get TDQN working with 5 action environment
This commit is contained in:
parent
d4db5c3281
commit
6048f60f13
|
@ -1,16 +1,17 @@
|
||||||
import logging
|
import logging
|
||||||
from typing import Any, Dict, Optional
|
from typing import Any, Dict # Optional
|
||||||
|
from enum import Enum
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch as th
|
import torch as th
|
||||||
from stable_baselines3.common.callbacks import EvalCallback
|
from stable_baselines3.common.callbacks import EvalCallback
|
||||||
from stable_baselines3.common.monitor import Monitor
|
from stable_baselines3.common.monitor import Monitor
|
||||||
# from stable_baselines3.common.vec_env import SubprocVecEnv
|
# from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||||
from freqtrade.freqai.RL.BaseRLEnv import BaseRLEnv, Actions, Positions
|
from freqtrade.freqai.RL.BaseRLEnv import BaseRLEnv
|
||||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||||
from freqtrade.freqai.RL.TDQNagent import TDQN
|
from freqtrade.freqai.RL.TDQNagent import TDQN
|
||||||
from stable_baselines3.common.buffers import ReplayBuffer
|
from stable_baselines3.common.buffers import ReplayBuffer
|
||||||
|
from gym import spaces
|
||||||
|
from gym.utils import seeding
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
@ -57,7 +58,7 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||||
learning_rate=0.00025, gamma=0.9,
|
learning_rate=0.00025, gamma=0.9,
|
||||||
target_update_interval=5000, buffer_size=50000,
|
target_update_interval=5000, buffer_size=50000,
|
||||||
exploration_initial_eps=1, exploration_final_eps=0.1,
|
exploration_initial_eps=1, exploration_final_eps=0.1,
|
||||||
replay_buffer_class=Optional(ReplayBuffer)
|
replay_buffer_class=ReplayBuffer
|
||||||
)
|
)
|
||||||
|
|
||||||
model.learn(
|
model.learn(
|
||||||
|
@ -70,11 +71,102 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
class Actions(Enum):
|
||||||
|
Neutral = 0
|
||||||
|
Long_buy = 1
|
||||||
|
Long_sell = 2
|
||||||
|
Short_buy = 3
|
||||||
|
Short_sell = 4
|
||||||
|
|
||||||
|
|
||||||
|
class Positions(Enum):
|
||||||
|
Short = 0
|
||||||
|
Long = 1
|
||||||
|
Neutral = 0.5
|
||||||
|
|
||||||
|
def opposite(self):
|
||||||
|
return Positions.Short if self == Positions.Long else Positions.Long
|
||||||
|
|
||||||
|
|
||||||
class MyRLEnv(BaseRLEnv):
|
class MyRLEnv(BaseRLEnv):
|
||||||
"""
|
"""
|
||||||
User can override any function in BaseRLEnv and gym.Env
|
User can override any function in BaseRLEnv and gym.Env. Here the user
|
||||||
|
Adds 5 actions.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
metadata = {'render.modes': ['human']}
|
||||||
|
|
||||||
|
def __init__(self, df, prices, reward_kwargs, window_size=10, starting_point=True, ):
|
||||||
|
assert df.ndim == 2
|
||||||
|
|
||||||
|
self.seed()
|
||||||
|
self.df = df
|
||||||
|
self.signal_features = self.df
|
||||||
|
self.prices = prices
|
||||||
|
self.window_size = window_size
|
||||||
|
self.starting_point = starting_point
|
||||||
|
self.rr = reward_kwargs["rr"]
|
||||||
|
self.profit_aim = reward_kwargs["profit_aim"]
|
||||||
|
|
||||||
|
self.fee = 0.0015
|
||||||
|
|
||||||
|
# # spaces
|
||||||
|
self.shape = (window_size, self.signal_features.shape[1])
|
||||||
|
self.action_space = spaces.Discrete(len(Actions))
|
||||||
|
self.observation_space = spaces.Box(
|
||||||
|
low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
||||||
|
|
||||||
|
# episode
|
||||||
|
self._start_tick = self.window_size
|
||||||
|
self._end_tick = len(self.prices) - 1
|
||||||
|
self._done = None
|
||||||
|
self._current_tick = None
|
||||||
|
self._last_trade_tick = None
|
||||||
|
self._position = Positions.Neutral
|
||||||
|
self._position_history = None
|
||||||
|
self.total_reward = None
|
||||||
|
self._total_profit = None
|
||||||
|
self._first_rendering = None
|
||||||
|
self.history = None
|
||||||
|
self.trade_history = []
|
||||||
|
|
||||||
|
# self.A_t, self.B_t = 0.000639, 0.00001954
|
||||||
|
self.r_t_change = 0.
|
||||||
|
|
||||||
|
self.returns_report = []
|
||||||
|
|
||||||
|
def seed(self, seed=None):
|
||||||
|
self.np_random, seed = seeding.np_random(seed)
|
||||||
|
return [seed]
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
|
||||||
|
self._done = False
|
||||||
|
|
||||||
|
if self.starting_point is True:
|
||||||
|
self._position_history = (self._start_tick * [None]) + [self._position]
|
||||||
|
else:
|
||||||
|
self._position_history = (self.window_size * [None]) + [self._position]
|
||||||
|
|
||||||
|
self._current_tick = self._start_tick
|
||||||
|
self._last_trade_tick = None
|
||||||
|
self._position = Positions.Neutral
|
||||||
|
|
||||||
|
self.total_reward = 0.
|
||||||
|
self._total_profit = 1. # unit
|
||||||
|
self._first_rendering = True
|
||||||
|
self.history = {}
|
||||||
|
self.trade_history = []
|
||||||
|
self.portfolio_log_returns = np.zeros(len(self.prices))
|
||||||
|
|
||||||
|
self._profits = [(self._start_tick, 1)]
|
||||||
|
self.close_trade_profit = []
|
||||||
|
self.r_t_change = 0.
|
||||||
|
|
||||||
|
self.returns_report = []
|
||||||
|
|
||||||
|
return self._get_observation()
|
||||||
|
|
||||||
def step(self, action):
|
def step(self, action):
|
||||||
self._done = False
|
self._done = False
|
||||||
self._current_tick += 1
|
self._current_tick += 1
|
||||||
|
@ -85,11 +177,12 @@ class MyRLEnv(BaseRLEnv):
|
||||||
self.update_portfolio_log_returns(action)
|
self.update_portfolio_log_returns(action)
|
||||||
|
|
||||||
self._update_profit(action)
|
self._update_profit(action)
|
||||||
step_reward = self._calculate_reward(action)
|
step_reward = self.calculate_reward(action)
|
||||||
self.total_reward += step_reward
|
self.total_reward += step_reward
|
||||||
|
|
||||||
trade_type = None
|
trade_type = None
|
||||||
if self.is_tradesignal(action):
|
if self.is_tradesignal(action): # exclude 3 case not trade
|
||||||
|
# Update position
|
||||||
"""
|
"""
|
||||||
Action: Neutral, position: Long -> Close Long
|
Action: Neutral, position: Long -> Close Long
|
||||||
Action: Neutral, position: Short -> Close Short
|
Action: Neutral, position: Short -> Close Short
|
||||||
|
@ -104,12 +197,18 @@ class MyRLEnv(BaseRLEnv):
|
||||||
if action == Actions.Neutral.value:
|
if action == Actions.Neutral.value:
|
||||||
self._position = Positions.Neutral
|
self._position = Positions.Neutral
|
||||||
trade_type = "neutral"
|
trade_type = "neutral"
|
||||||
elif action == Actions.Long.value:
|
elif action == Actions.Long_buy.value:
|
||||||
self._position = Positions.Long
|
self._position = Positions.Long
|
||||||
trade_type = "long"
|
trade_type = "long"
|
||||||
elif action == Actions.Short.value:
|
elif action == Actions.Short_buy.value:
|
||||||
self._position = Positions.Short
|
self._position = Positions.Short
|
||||||
trade_type = "short"
|
trade_type = "short"
|
||||||
|
elif action == Actions.Long_sell.value:
|
||||||
|
self._position = Positions.Neutral
|
||||||
|
trade_type = "neutral"
|
||||||
|
elif action == Actions.Short_sell.value:
|
||||||
|
self._position = Positions.Neutral
|
||||||
|
trade_type = "neutral"
|
||||||
else:
|
else:
|
||||||
print("case not defined")
|
print("case not defined")
|
||||||
|
|
||||||
|
@ -136,33 +235,69 @@ class MyRLEnv(BaseRLEnv):
|
||||||
|
|
||||||
return observation, step_reward, self._done, info
|
return observation, step_reward, self._done, info
|
||||||
|
|
||||||
def calculate_reward(self, action):
|
def _get_observation(self):
|
||||||
|
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
||||||
|
|
||||||
|
def get_unrealized_profit(self):
|
||||||
|
|
||||||
if self._last_trade_tick is None:
|
if self._last_trade_tick is None:
|
||||||
return 0.
|
return 0.
|
||||||
|
|
||||||
# close long
|
if self._position == Positions.Neutral:
|
||||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
return 0.
|
||||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
elif self._position == Positions.Short:
|
||||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
|
||||||
return float(np.log(current_price) - np.log(last_trade_price))
|
|
||||||
|
|
||||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
|
||||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
|
||||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
||||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
|
||||||
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
|
|
||||||
|
|
||||||
# close short
|
|
||||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
|
||||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
||||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||||
return float(np.log(last_trade_price) - np.log(current_price))
|
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||||
|
return (last_trade_price - current_price) / last_trade_price
|
||||||
|
elif self._position == Positions.Long:
|
||||||
|
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||||
|
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||||
|
return (current_price - last_trade_price) / last_trade_price
|
||||||
|
else:
|
||||||
|
return 0.
|
||||||
|
|
||||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
def is_tradesignal(self, action):
|
||||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
# trade signal
|
||||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
"""
|
||||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
not trade signal is :
|
||||||
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
|
Action: Neutral, position: Neutral -> Nothing
|
||||||
|
Action: Long, position: Long -> Hold Long
|
||||||
|
Action: Short, position: Short -> Hold Short
|
||||||
|
"""
|
||||||
|
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
|
||||||
|
(action == Actions.Short_buy.value and self._position == Positions.Short) or
|
||||||
|
(action == Actions.Short_sell.value and self._position == Positions.Short) or
|
||||||
|
(action == Actions.Short_buy.value and self._position == Positions.Long) or
|
||||||
|
(action == Actions.Short_sell.value and self._position == Positions.Long) or
|
||||||
|
|
||||||
return 0.
|
(action == Actions.Long_buy.value and self._position == Positions.Long) or
|
||||||
|
(action == Actions.Long_sell.value and self._position == Positions.Long) or
|
||||||
|
(action == Actions.Long_buy.value and self._position == Positions.Short) or
|
||||||
|
(action == Actions.Long_sell.value and self._position == Positions.Short))
|
||||||
|
|
||||||
|
def _is_trade(self, action):
|
||||||
|
return ((action == Actions.Long_buy.value and self._position == Positions.Short) or
|
||||||
|
(action == Actions.Short_buy.value and self._position == Positions.Long) or
|
||||||
|
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
||||||
|
(action == Actions.Neutral.value and self._position == Positions.Short) or
|
||||||
|
|
||||||
|
(action == Actions.Neutral.Short_sell and self._position == Positions.Long) or
|
||||||
|
(action == Actions.Neutral.Long_sell and self._position == Positions.Short)
|
||||||
|
)
|
||||||
|
|
||||||
|
def is_hold(self, action):
|
||||||
|
return ((action == Actions.Short.value and self._position == Positions.Short)
|
||||||
|
or (action == Actions.Long.value and self._position == Positions.Long))
|
||||||
|
|
||||||
|
def add_buy_fee(self, price):
|
||||||
|
return price * (1 + self.fee)
|
||||||
|
|
||||||
|
def add_sell_fee(self, price):
|
||||||
|
return price / (1 + self.fee)
|
||||||
|
|
||||||
|
def _update_history(self, info):
|
||||||
|
if not self.history:
|
||||||
|
self.history = {key: [] for key in info.keys()}
|
||||||
|
|
||||||
|
for key, value in info.items():
|
||||||
|
self.history[key].append(value)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user