feat: split hyperopt class

this ensures it's clear which parts are passed to workers
This commit is contained in:
Matthias 2024-11-10 15:09:47 +01:00
parent 62234878a1
commit 6719d9670d
2 changed files with 461 additions and 371 deletions

View File

@ -7,29 +7,24 @@ This module contains the hyperopt logic
import logging
import random
import sys
import warnings
from datetime import datetime, timezone
from datetime import datetime
from math import ceil
from pathlib import Path
from typing import Any
import rapidjson
from joblib import Parallel, cpu_count, delayed, dump, load, wrap_non_picklable_objects
from joblib import Parallel, cpu_count, delayed, wrap_non_picklable_objects
from joblib.externals import cloudpickle
from pandas import DataFrame
from rich.console import Console
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN, Config
from freqtrade.data.converter import trim_dataframes
from freqtrade.data.history import get_timerange
from freqtrade.data.metrics import calculate_market_change
from freqtrade.constants import FTHYPT_FILEVERSION, LAST_BT_RESULT_FN, Config
from freqtrade.enums import HyperoptState
from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts, file_dump_json, plural
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.misc import file_dump_json, plural
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
from freqtrade.optimize.hyperopt.hyperopt_auto import HyperOptAuto
from freqtrade.optimize.hyperopt.hyperopt_optimizer import HyperOptimizer
from freqtrade.optimize.hyperopt.hyperopt_output import HyperoptOutput
from freqtrade.optimize.hyperopt_loss.hyperopt_loss_interface import IHyperOptLoss
from freqtrade.optimize.hyperopt_tools import (
@ -37,17 +32,9 @@ from freqtrade.optimize.hyperopt_tools import (
HyperoptTools,
hyperopt_serializer,
)
from freqtrade.optimize.optimize_reports import generate_strategy_stats
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
from freqtrade.util import get_progress_tracker
# Suppress scikit-learn FutureWarnings from skopt
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=FutureWarning)
from skopt import Optimizer
from skopt.space import Dimension
logger = logging.getLogger(__name__)
@ -57,8 +44,6 @@ INITIAL_POINTS = 30
# in the skopt model queue, to optimize memory consumption
SKOPT_MODEL_QUEUE_SIZE = 10
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
class Hyperopt:
"""
@ -70,43 +55,19 @@ class Hyperopt:
"""
def __init__(self, config: Config) -> None:
self.buy_space: list[Dimension] = []
self.sell_space: list[Dimension] = []
self.protection_space: list[Dimension] = []
self.roi_space: list[Dimension] = []
self.stoploss_space: list[Dimension] = []
self.trailing_space: list[Dimension] = []
self.max_open_trades_space: list[Dimension] = []
self.dimensions: list[Dimension] = []
self._hyper_out: HyperoptOutput = HyperoptOutput(streaming=True)
self.config = config
self.min_date: datetime
self.max_date: datetime
self.backtesting = Backtesting(self.config)
self.pairlist = self.backtesting.pairlists.whitelist
self.custom_hyperopt: HyperOptAuto
self.analyze_per_epoch = self.config.get("analyze_per_epoch", False)
HyperoptStateContainer.set_state(HyperoptState.STARTUP)
if not self.config.get("hyperopt"):
self.custom_hyperopt = HyperOptAuto(self.config)
else:
if self.config.get("hyperopt"):
raise OperationalException(
"Using separate Hyperopt files has been removed in 2021.9. Please convert "
"your existing Hyperopt file to the new Hyperoptable strategy interface"
)
self.backtesting._set_strategy(self.backtesting.strategylist[0])
self.custom_hyperopt.strategy = self.backtesting.strategy
self.hyperopt_pickle_magic(self.backtesting.strategy.__class__.__bases__)
self.custom_hyperoptloss: IHyperOptLoss = HyperOptLossResolver.load_hyperoptloss(
self.config
)
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
time_now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
strategy = str(self.config["strategy"])
self.results_file: Path = (
@ -123,7 +84,6 @@ class Hyperopt:
self.clean_hyperopt()
self.market_change = 0.0
self.num_epochs_saved = 0
self.current_best_epoch: dict[str, Any] | None = None
@ -136,6 +96,8 @@ class Hyperopt:
self.print_colorized = self.config.get("print_colorized", False)
self.print_json = self.config.get("print_json", False)
self.hyperopter = HyperOptimizer(self.config)
@staticmethod
def get_lock_filename(config: Config) -> str:
return str(config["user_data_dir"] / "hyperopt.lock")
@ -161,18 +123,6 @@ class Hyperopt:
cloudpickle.register_pickle_by_value(sys.modules[modules.__module__])
self.hyperopt_pickle_magic(modules.__bases__)
def _get_params_dict(
self, dimensions: list[Dimension], raw_params: list[Any]
) -> dict[str, Any]:
# Ensure the number of dimensions match
# the number of parameters in the list.
if len(raw_params) != len(dimensions):
raise ValueError("Mismatch in number of search-space dimensions.")
# Return a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters.
return {d.name: v for d, v in zip(dimensions, raw_params, strict=False)}
def _save_result(self, epoch: dict) -> None:
"""
Save hyperopt results to file
@ -199,58 +149,6 @@ class Hyperopt:
latest_filename = Path.joinpath(self.results_file.parent, LAST_BT_RESULT_FN)
file_dump_json(latest_filename, {"latest_hyperopt": str(self.results_file.name)}, log=False)
def _get_params_details(self, params: dict) -> dict:
"""
Return the params for each space
"""
result: dict = {}
if HyperoptTools.has_space(self.config, "buy"):
result["buy"] = {p.name: params.get(p.name) for p in self.buy_space}
if HyperoptTools.has_space(self.config, "sell"):
result["sell"] = {p.name: params.get(p.name) for p in self.sell_space}
if HyperoptTools.has_space(self.config, "protection"):
result["protection"] = {p.name: params.get(p.name) for p in self.protection_space}
if HyperoptTools.has_space(self.config, "roi"):
result["roi"] = {
str(k): v for k, v in self.custom_hyperopt.generate_roi_table(params).items()
}
if HyperoptTools.has_space(self.config, "stoploss"):
result["stoploss"] = {p.name: params.get(p.name) for p in self.stoploss_space}
if HyperoptTools.has_space(self.config, "trailing"):
result["trailing"] = self.custom_hyperopt.generate_trailing_params(params)
if HyperoptTools.has_space(self.config, "trades"):
result["max_open_trades"] = {
"max_open_trades": (
self.backtesting.strategy.max_open_trades
if self.backtesting.strategy.max_open_trades != float("inf")
else -1
)
}
return result
def _get_no_optimize_details(self) -> dict[str, Any]:
"""
Get non-optimized parameters
"""
result: dict[str, Any] = {}
strategy = self.backtesting.strategy
if not HyperoptTools.has_space(self.config, "roi"):
result["roi"] = {str(k): v for k, v in strategy.minimal_roi.items()}
if not HyperoptTools.has_space(self.config, "stoploss"):
result["stoploss"] = {"stoploss": strategy.stoploss}
if not HyperoptTools.has_space(self.config, "trailing"):
result["trailing"] = {
"trailing_stop": strategy.trailing_stop,
"trailing_stop_positive": strategy.trailing_stop_positive,
"trailing_stop_positive_offset": strategy.trailing_stop_positive_offset,
"trailing_only_offset_is_reached": strategy.trailing_only_offset_is_reached,
}
if not HyperoptTools.has_space(self.config, "trades"):
result["max_open_trades"] = {"max_open_trades": strategy.max_open_trades}
return result
def print_results(self, results: dict[str, Any]) -> None:
"""
Log results if it is better than any previous evaluation
@ -266,258 +164,16 @@ class Hyperopt:
self.print_all,
)
def init_spaces(self):
"""
Assign the dimensions in the hyperoptimization space.
"""
if HyperoptTools.has_space(self.config, "protection"):
# Protections can only be optimized when using the Parameter interface
logger.debug("Hyperopt has 'protection' space")
# Enable Protections if protection space is selected.
self.config["enable_protections"] = True
self.backtesting.enable_protections = True
self.protection_space = self.custom_hyperopt.protection_space()
if HyperoptTools.has_space(self.config, "buy"):
logger.debug("Hyperopt has 'buy' space")
self.buy_space = self.custom_hyperopt.buy_indicator_space()
if HyperoptTools.has_space(self.config, "sell"):
logger.debug("Hyperopt has 'sell' space")
self.sell_space = self.custom_hyperopt.sell_indicator_space()
if HyperoptTools.has_space(self.config, "roi"):
logger.debug("Hyperopt has 'roi' space")
self.roi_space = self.custom_hyperopt.roi_space()
if HyperoptTools.has_space(self.config, "stoploss"):
logger.debug("Hyperopt has 'stoploss' space")
self.stoploss_space = self.custom_hyperopt.stoploss_space()
if HyperoptTools.has_space(self.config, "trailing"):
logger.debug("Hyperopt has 'trailing' space")
self.trailing_space = self.custom_hyperopt.trailing_space()
if HyperoptTools.has_space(self.config, "trades"):
logger.debug("Hyperopt has 'trades' space")
self.max_open_trades_space = self.custom_hyperopt.max_open_trades_space()
self.dimensions = (
self.buy_space
+ self.sell_space
+ self.protection_space
+ self.roi_space
+ self.stoploss_space
+ self.trailing_space
+ self.max_open_trades_space
)
def assign_params(self, params_dict: dict[str, Any], category: str) -> None:
"""
Assign hyperoptable parameters
"""
for attr_name, attr in self.backtesting.strategy.enumerate_parameters(category):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params_dict[attr_name]
def generate_optimizer(self, raw_params: list[Any]) -> dict[str, Any]:
"""
Used Optimize function.
Called once per epoch to optimize whatever is configured.
Keep this function as optimized as possible!
"""
HyperoptStateContainer.set_state(HyperoptState.OPTIMIZE)
backtest_start_time = datetime.now(timezone.utc)
params_dict = self._get_params_dict(self.dimensions, raw_params)
# Apply parameters
if HyperoptTools.has_space(self.config, "buy"):
self.assign_params(params_dict, "buy")
if HyperoptTools.has_space(self.config, "sell"):
self.assign_params(params_dict, "sell")
if HyperoptTools.has_space(self.config, "protection"):
self.assign_params(params_dict, "protection")
if HyperoptTools.has_space(self.config, "roi"):
self.backtesting.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(
params_dict
)
if HyperoptTools.has_space(self.config, "stoploss"):
self.backtesting.strategy.stoploss = params_dict["stoploss"]
if HyperoptTools.has_space(self.config, "trailing"):
d = self.custom_hyperopt.generate_trailing_params(params_dict)
self.backtesting.strategy.trailing_stop = d["trailing_stop"]
self.backtesting.strategy.trailing_stop_positive = d["trailing_stop_positive"]
self.backtesting.strategy.trailing_stop_positive_offset = d[
"trailing_stop_positive_offset"
]
self.backtesting.strategy.trailing_only_offset_is_reached = d[
"trailing_only_offset_is_reached"
]
if HyperoptTools.has_space(self.config, "trades"):
if self.config["stake_amount"] == "unlimited" and (
params_dict["max_open_trades"] == -1 or params_dict["max_open_trades"] == 0
):
# Ignore unlimited max open trades if stake amount is unlimited
params_dict.update({"max_open_trades": self.config["max_open_trades"]})
updated_max_open_trades = (
int(params_dict["max_open_trades"])
if (params_dict["max_open_trades"] != -1 and params_dict["max_open_trades"] != 0)
else float("inf")
)
self.config.update({"max_open_trades": updated_max_open_trades})
self.backtesting.strategy.max_open_trades = updated_max_open_trades
with self.data_pickle_file.open("rb") as f:
processed = load(f, mmap_mode="r")
if self.analyze_per_epoch:
# Data is not yet analyzed, rerun populate_indicators.
processed = self.advise_and_trim(processed)
bt_results = self.backtesting.backtest(
processed=processed, start_date=self.min_date, end_date=self.max_date
)
backtest_end_time = datetime.now(timezone.utc)
bt_results.update(
{
"backtest_start_time": int(backtest_start_time.timestamp()),
"backtest_end_time": int(backtest_end_time.timestamp()),
}
)
return self._get_results_dict(
bt_results, self.min_date, self.max_date, params_dict, processed=processed
)
def _get_results_dict(
self,
backtesting_results: dict[str, Any],
min_date: datetime,
max_date: datetime,
params_dict: dict[str, Any],
processed: dict[str, DataFrame],
) -> dict[str, Any]:
params_details = self._get_params_details(params_dict)
strat_stats = generate_strategy_stats(
self.pairlist,
self.backtesting.strategy.get_strategy_name(),
backtesting_results,
min_date,
max_date,
market_change=self.market_change,
is_hyperopt=True,
)
results_explanation = HyperoptTools.format_results_explanation_string(
strat_stats, self.config["stake_currency"]
)
not_optimized = self.backtesting.strategy.get_no_optimize_params()
not_optimized = deep_merge_dicts(not_optimized, self._get_no_optimize_details())
trade_count = strat_stats["total_trades"]
total_profit = strat_stats["profit_total"]
# If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value)
# in order to cast this hyperspace point away from optimization
# path. We do not want to optimize 'hodl' strategies.
loss: float = MAX_LOSS
if trade_count >= self.config["hyperopt_min_trades"]:
loss = self.calculate_loss(
results=backtesting_results["results"],
trade_count=trade_count,
min_date=min_date,
max_date=max_date,
config=self.config,
processed=processed,
backtest_stats=strat_stats,
)
return {
"loss": loss,
"params_dict": params_dict,
"params_details": params_details,
"params_not_optimized": not_optimized,
"results_metrics": strat_stats,
"results_explanation": results_explanation,
"total_profit": total_profit,
}
def get_optimizer(self, dimensions: list[Dimension], cpu_count) -> Optimizer:
estimator = self.custom_hyperopt.generate_estimator(dimensions=dimensions)
acq_optimizer = "sampling"
if isinstance(estimator, str):
if estimator not in ("GP", "RF", "ET", "GBRT"):
raise OperationalException(f"Estimator {estimator} not supported.")
else:
acq_optimizer = "auto"
logger.info(f"Using estimator {estimator}.")
return Optimizer(
dimensions,
base_estimator=estimator,
acq_optimizer=acq_optimizer,
n_initial_points=INITIAL_POINTS,
acq_optimizer_kwargs={"n_jobs": cpu_count},
random_state=self.random_state,
model_queue_size=SKOPT_MODEL_QUEUE_SIZE,
)
def run_optimizer_parallel(self, parallel: Parallel, asked: list[list]) -> list[dict[str, Any]]:
"""Start optimizer in a parallel way"""
return parallel(
delayed(wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked
delayed(wrap_non_picklable_objects(self.hyperopter.generate_optimizer))(v)
for v in asked
)
def _set_random_state(self, random_state: int | None) -> int:
return random_state or random.randint(1, 2**16 - 1) # noqa: S311
def advise_and_trim(self, data: dict[str, DataFrame]) -> dict[str, DataFrame]:
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
# Trim startup period from analyzed dataframe to get correct dates for output.
# This is only used to keep track of min/max date after trimming.
# The result is NOT returned from this method, actual trimming happens in backtesting.
trimmed = trim_dataframes(preprocessed, self.timerange, self.backtesting.required_startup)
self.min_date, self.max_date = get_timerange(trimmed)
if not self.market_change:
self.market_change = calculate_market_change(trimmed, "close")
# Real trimming will happen as part of backtesting.
return preprocessed
def prepare_hyperopt_data(self) -> None:
HyperoptStateContainer.set_state(HyperoptState.DATALOAD)
data, self.timerange = self.backtesting.load_bt_data()
self.backtesting.load_bt_data_detail()
logger.info("Dataload complete. Calculating indicators")
if not self.analyze_per_epoch:
HyperoptStateContainer.set_state(HyperoptState.INDICATORS)
preprocessed = self.advise_and_trim(data)
logger.info(
f"Hyperopting with data from "
f"{self.min_date.strftime(DATETIME_PRINT_FORMAT)} "
f"up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} "
f"({(self.max_date - self.min_date).days} days).."
)
# Store non-trimmed data - will be trimmed after signal generation.
dump(preprocessed, self.data_pickle_file)
else:
dump(data, self.data_pickle_file)
def get_asked_points(self, n_points: int) -> tuple[list[list[Any]], list[bool]]:
"""
Enforce points returned from `self.opt.ask` have not been already evaluated
@ -595,27 +251,16 @@ class Hyperopt:
self.random_state = self._set_random_state(self.config.get("hyperopt_random_state"))
logger.info(f"Using optimizer random state: {self.random_state}")
self.hyperopt_table_header = -1
# Initialize spaces ...
self.init_spaces()
self.prepare_hyperopt_data()
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange.close()
self.backtesting.exchange._api = None
self.backtesting.exchange._api_async = None
self.backtesting.exchange.loop = None # type: ignore
self.backtesting.exchange._loop_lock = None # type: ignore
self.backtesting.exchange._cache_lock = None # type: ignore
# self.backtesting.exchange = None # type: ignore
self.backtesting.pairlists = None # type: ignore
self.hyperopter.prepare_hyperopt()
cpus = cpu_count()
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
config_jobs = self.config.get("hyperopt_jobs", -1)
logger.info(f"Number of parallel jobs set as: {config_jobs}")
self.opt = self.get_optimizer(self.dimensions, config_jobs)
self.opt = self.hyperopter.get_optimizer(
config_jobs, self.random_state, INITIAL_POINTS, SKOPT_MODEL_QUEUE_SIZE
)
try:
with Parallel(n_jobs=config_jobs) as parallel:
@ -638,7 +283,7 @@ class Hyperopt:
# First analysis not in parallel mode when using --analyze-per-epoch.
# This allows dataprovider to load it's informative cache.
asked, is_random = self.get_asked_points(n_points=1)
f_val0 = self.generate_optimizer(asked[0])
f_val0 = self.hyperopter.generate_optimizer(asked[0])
self.opt.tell(asked, [f_val0["loss"]])
self.evaluate_result(f_val0, 1, is_random[0])
pbar.update(task, advance=1)
@ -672,7 +317,9 @@ class Hyperopt:
if self.current_best_epoch:
HyperoptTools.try_export_params(
self.config, self.backtesting.strategy.get_strategy_name(), self.current_best_epoch
self.config,
self.hyperopter.get_strategy_name(),
self.current_best_epoch,
)
HyperoptTools.show_epoch_details(

View File

@ -0,0 +1,443 @@
# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
"""
This module contains the hyperopt logic
"""
import logging
import sys
import warnings
from datetime import datetime, timezone
from typing import Any
from joblib import dump, load
from joblib.externals import cloudpickle
from pandas import DataFrame
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config
from freqtrade.data.converter import trim_dataframes
from freqtrade.data.history import get_timerange
from freqtrade.data.metrics import calculate_market_change
from freqtrade.enums import HyperoptState
from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts
from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
from freqtrade.optimize.hyperopt.hyperopt_auto import HyperOptAuto
from freqtrade.optimize.hyperopt_loss.hyperopt_loss_interface import IHyperOptLoss
from freqtrade.optimize.hyperopt_tools import (
HyperoptStateContainer,
HyperoptTools,
)
from freqtrade.optimize.optimize_reports import generate_strategy_stats
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
# Suppress scikit-learn FutureWarnings from skopt
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=FutureWarning)
from skopt import Optimizer
from skopt.space import Dimension
logger = logging.getLogger(__name__)
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
class HyperOptimizer:
"""
HyperoptOptimizer class
This class is sent to the hyperopt worker processes.
"""
def __init__(self, config: Config) -> None:
self.buy_space: list[Dimension] = []
self.sell_space: list[Dimension] = []
self.protection_space: list[Dimension] = []
self.roi_space: list[Dimension] = []
self.stoploss_space: list[Dimension] = []
self.trailing_space: list[Dimension] = []
self.max_open_trades_space: list[Dimension] = []
self.dimensions: list[Dimension] = []
self.config = config
self.min_date: datetime
self.max_date: datetime
self.backtesting = Backtesting(self.config)
self.pairlist = self.backtesting.pairlists.whitelist
self.custom_hyperopt: HyperOptAuto
self.analyze_per_epoch = self.config.get("analyze_per_epoch", False)
if not self.config.get("hyperopt"):
self.custom_hyperopt = HyperOptAuto(self.config)
else:
raise OperationalException(
"Using separate Hyperopt files has been removed in 2021.9. Please convert "
"your existing Hyperopt file to the new Hyperoptable strategy interface"
)
self.backtesting._set_strategy(self.backtesting.strategylist[0])
self.custom_hyperopt.strategy = self.backtesting.strategy
self.hyperopt_pickle_magic(self.backtesting.strategy.__class__.__bases__)
self.custom_hyperoptloss: IHyperOptLoss = HyperOptLossResolver.load_hyperoptloss(
self.config
)
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
self.data_pickle_file = (
self.config["user_data_dir"] / "hyperopt_results" / "hyperopt_tickerdata.pkl"
)
self.market_change = 0.0
if HyperoptTools.has_space(self.config, "sell"):
# Make sure use_exit_signal is enabled
self.config["use_exit_signal"] = True
def prepare_hyperopt(self) -> None:
# Initialize spaces ...
self.init_spaces()
self.prepare_hyperopt_data()
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange.close()
self.backtesting.exchange._api = None
self.backtesting.exchange._api_async = None
self.backtesting.exchange.loop = None # type: ignore
self.backtesting.exchange._loop_lock = None # type: ignore
self.backtesting.exchange._cache_lock = None # type: ignore
# self.backtesting.exchange = None # type: ignore
self.backtesting.pairlists = None # type: ignore
def get_strategy_name(self) -> str:
return self.backtesting.strategy.get_strategy_name()
def hyperopt_pickle_magic(self, bases) -> None:
"""
Hyperopt magic to allow strategy inheritance across files.
For this to properly work, we need to register the module of the imported class
to pickle as value.
"""
for modules in bases:
if modules.__name__ != "IStrategy":
cloudpickle.register_pickle_by_value(sys.modules[modules.__module__])
self.hyperopt_pickle_magic(modules.__bases__)
def _get_params_dict(
self, dimensions: list[Dimension], raw_params: list[Any]
) -> dict[str, Any]:
# Ensure the number of dimensions match
# the number of parameters in the list.
if len(raw_params) != len(dimensions):
raise ValueError("Mismatch in number of search-space dimensions.")
# Return a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters.
return {d.name: v for d, v in zip(dimensions, raw_params, strict=False)}
def get_optimizer(
self,
cpu_count: int,
random_state: int,
initial_points: int,
model_queue_size: int,
) -> Optimizer:
dimensions = self.dimensions
estimator = self.custom_hyperopt.generate_estimator(dimensions=dimensions)
acq_optimizer = "sampling"
if isinstance(estimator, str):
if estimator not in ("GP", "RF", "ET", "GBRT"):
raise OperationalException(f"Estimator {estimator} not supported.")
else:
acq_optimizer = "auto"
logger.info(f"Using estimator {estimator}.")
return Optimizer(
dimensions,
base_estimator=estimator,
acq_optimizer=acq_optimizer,
n_initial_points=initial_points,
acq_optimizer_kwargs={"n_jobs": cpu_count},
random_state=random_state,
model_queue_size=model_queue_size,
)
def _get_params_details(self, params: dict) -> dict:
"""
Return the params for each space
"""
result: dict = {}
if HyperoptTools.has_space(self.config, "buy"):
result["buy"] = {p.name: params.get(p.name) for p in self.buy_space}
if HyperoptTools.has_space(self.config, "sell"):
result["sell"] = {p.name: params.get(p.name) for p in self.sell_space}
if HyperoptTools.has_space(self.config, "protection"):
result["protection"] = {p.name: params.get(p.name) for p in self.protection_space}
if HyperoptTools.has_space(self.config, "roi"):
result["roi"] = {
str(k): v for k, v in self.custom_hyperopt.generate_roi_table(params).items()
}
if HyperoptTools.has_space(self.config, "stoploss"):
result["stoploss"] = {p.name: params.get(p.name) for p in self.stoploss_space}
if HyperoptTools.has_space(self.config, "trailing"):
result["trailing"] = self.custom_hyperopt.generate_trailing_params(params)
if HyperoptTools.has_space(self.config, "trades"):
result["max_open_trades"] = {
"max_open_trades": (
self.backtesting.strategy.max_open_trades
if self.backtesting.strategy.max_open_trades != float("inf")
else -1
)
}
return result
def _get_no_optimize_details(self) -> dict[str, Any]:
"""
Get non-optimized parameters
"""
result: dict[str, Any] = {}
strategy = self.backtesting.strategy
if not HyperoptTools.has_space(self.config, "roi"):
result["roi"] = {str(k): v for k, v in strategy.minimal_roi.items()}
if not HyperoptTools.has_space(self.config, "stoploss"):
result["stoploss"] = {"stoploss": strategy.stoploss}
if not HyperoptTools.has_space(self.config, "trailing"):
result["trailing"] = {
"trailing_stop": strategy.trailing_stop,
"trailing_stop_positive": strategy.trailing_stop_positive,
"trailing_stop_positive_offset": strategy.trailing_stop_positive_offset,
"trailing_only_offset_is_reached": strategy.trailing_only_offset_is_reached,
}
if not HyperoptTools.has_space(self.config, "trades"):
result["max_open_trades"] = {"max_open_trades": strategy.max_open_trades}
return result
def init_spaces(self):
"""
Assign the dimensions in the hyperoptimization space.
"""
if HyperoptTools.has_space(self.config, "protection"):
# Protections can only be optimized when using the Parameter interface
logger.debug("Hyperopt has 'protection' space")
# Enable Protections if protection space is selected.
self.config["enable_protections"] = True
self.backtesting.enable_protections = True
self.protection_space = self.custom_hyperopt.protection_space()
if HyperoptTools.has_space(self.config, "buy"):
logger.debug("Hyperopt has 'buy' space")
self.buy_space = self.custom_hyperopt.buy_indicator_space()
if HyperoptTools.has_space(self.config, "sell"):
logger.debug("Hyperopt has 'sell' space")
self.sell_space = self.custom_hyperopt.sell_indicator_space()
if HyperoptTools.has_space(self.config, "roi"):
logger.debug("Hyperopt has 'roi' space")
self.roi_space = self.custom_hyperopt.roi_space()
if HyperoptTools.has_space(self.config, "stoploss"):
logger.debug("Hyperopt has 'stoploss' space")
self.stoploss_space = self.custom_hyperopt.stoploss_space()
if HyperoptTools.has_space(self.config, "trailing"):
logger.debug("Hyperopt has 'trailing' space")
self.trailing_space = self.custom_hyperopt.trailing_space()
if HyperoptTools.has_space(self.config, "trades"):
logger.debug("Hyperopt has 'trades' space")
self.max_open_trades_space = self.custom_hyperopt.max_open_trades_space()
self.dimensions = (
self.buy_space
+ self.sell_space
+ self.protection_space
+ self.roi_space
+ self.stoploss_space
+ self.trailing_space
+ self.max_open_trades_space
)
def assign_params(self, params_dict: dict[str, Any], category: str) -> None:
"""
Assign hyperoptable parameters
"""
for attr_name, attr in self.backtesting.strategy.enumerate_parameters(category):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params_dict[attr_name]
def generate_optimizer(self, raw_params: list[Any]) -> dict[str, Any]:
"""
Used Optimize function.
Called once per epoch to optimize whatever is configured.
Keep this function as optimized as possible!
"""
HyperoptStateContainer.set_state(HyperoptState.OPTIMIZE)
backtest_start_time = datetime.now(timezone.utc)
params_dict = self._get_params_dict(self.dimensions, raw_params)
# Apply parameters
if HyperoptTools.has_space(self.config, "buy"):
self.assign_params(params_dict, "buy")
if HyperoptTools.has_space(self.config, "sell"):
self.assign_params(params_dict, "sell")
if HyperoptTools.has_space(self.config, "protection"):
self.assign_params(params_dict, "protection")
if HyperoptTools.has_space(self.config, "roi"):
self.backtesting.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(
params_dict
)
if HyperoptTools.has_space(self.config, "stoploss"):
self.backtesting.strategy.stoploss = params_dict["stoploss"]
if HyperoptTools.has_space(self.config, "trailing"):
d = self.custom_hyperopt.generate_trailing_params(params_dict)
self.backtesting.strategy.trailing_stop = d["trailing_stop"]
self.backtesting.strategy.trailing_stop_positive = d["trailing_stop_positive"]
self.backtesting.strategy.trailing_stop_positive_offset = d[
"trailing_stop_positive_offset"
]
self.backtesting.strategy.trailing_only_offset_is_reached = d[
"trailing_only_offset_is_reached"
]
if HyperoptTools.has_space(self.config, "trades"):
if self.config["stake_amount"] == "unlimited" and (
params_dict["max_open_trades"] == -1 or params_dict["max_open_trades"] == 0
):
# Ignore unlimited max open trades if stake amount is unlimited
params_dict.update({"max_open_trades": self.config["max_open_trades"]})
updated_max_open_trades = (
int(params_dict["max_open_trades"])
if (params_dict["max_open_trades"] != -1 and params_dict["max_open_trades"] != 0)
else float("inf")
)
self.config.update({"max_open_trades": updated_max_open_trades})
self.backtesting.strategy.max_open_trades = updated_max_open_trades
with self.data_pickle_file.open("rb") as f:
processed = load(f, mmap_mode="r")
if self.analyze_per_epoch:
# Data is not yet analyzed, rerun populate_indicators.
processed = self.advise_and_trim(processed)
bt_results = self.backtesting.backtest(
processed=processed, start_date=self.min_date, end_date=self.max_date
)
backtest_end_time = datetime.now(timezone.utc)
bt_results.update(
{
"backtest_start_time": int(backtest_start_time.timestamp()),
"backtest_end_time": int(backtest_end_time.timestamp()),
}
)
return self._get_results_dict(
bt_results, self.min_date, self.max_date, params_dict, processed=processed
)
def _get_results_dict(
self,
backtesting_results: dict[str, Any],
min_date: datetime,
max_date: datetime,
params_dict: dict[str, Any],
processed: dict[str, DataFrame],
) -> dict[str, Any]:
params_details = self._get_params_details(params_dict)
strat_stats = generate_strategy_stats(
self.pairlist,
self.backtesting.strategy.get_strategy_name(),
backtesting_results,
min_date,
max_date,
market_change=self.market_change,
is_hyperopt=True,
)
results_explanation = HyperoptTools.format_results_explanation_string(
strat_stats, self.config["stake_currency"]
)
not_optimized = self.backtesting.strategy.get_no_optimize_params()
not_optimized = deep_merge_dicts(not_optimized, self._get_no_optimize_details())
trade_count = strat_stats["total_trades"]
total_profit = strat_stats["profit_total"]
# If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value)
# in order to cast this hyperspace point away from optimization
# path. We do not want to optimize 'hodl' strategies.
loss: float = MAX_LOSS
if trade_count >= self.config["hyperopt_min_trades"]:
loss = self.calculate_loss(
results=backtesting_results["results"],
trade_count=trade_count,
min_date=min_date,
max_date=max_date,
config=self.config,
processed=processed,
backtest_stats=strat_stats,
)
return {
"loss": loss,
"params_dict": params_dict,
"params_details": params_details,
"params_not_optimized": not_optimized,
"results_metrics": strat_stats,
"results_explanation": results_explanation,
"total_profit": total_profit,
}
def advise_and_trim(self, data: dict[str, DataFrame]) -> dict[str, DataFrame]:
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
# Trim startup period from analyzed dataframe to get correct dates for output.
# This is only used to keep track of min/max date after trimming.
# The result is NOT returned from this method, actual trimming happens in backtesting.
trimmed = trim_dataframes(preprocessed, self.timerange, self.backtesting.required_startup)
self.min_date, self.max_date = get_timerange(trimmed)
if not self.market_change:
self.market_change = calculate_market_change(trimmed, "close")
# Real trimming will happen as part of backtesting.
return preprocessed
def prepare_hyperopt_data(self) -> None:
HyperoptStateContainer.set_state(HyperoptState.DATALOAD)
data, self.timerange = self.backtesting.load_bt_data()
self.backtesting.load_bt_data_detail()
logger.info("Dataload complete. Calculating indicators")
if not self.analyze_per_epoch:
HyperoptStateContainer.set_state(HyperoptState.INDICATORS)
preprocessed = self.advise_and_trim(data)
logger.info(
f"Hyperopting with data from "
f"{self.min_date.strftime(DATETIME_PRINT_FORMAT)} "
f"up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} "
f"({(self.max_date - self.min_date).days} days).."
)
# Store non-trimmed data - will be trimmed after signal generation.
dump(preprocessed, self.data_pickle_file)
else:
dump(data, self.data_pickle_file)