mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
Merge branch 'release/0.12.0'
This commit is contained in:
commit
6b15cb9b10
6
.dockerignore
Normal file
6
.dockerignore
Normal file
|
@ -0,0 +1,6 @@
|
|||
.git
|
||||
.gitignore
|
||||
Dockerfile
|
||||
.dockerignore
|
||||
config.json*
|
||||
*.sqlite
|
21
Dockerfile
21
Dockerfile
|
@ -1,20 +1,23 @@
|
|||
FROM python:3.6.2
|
||||
|
||||
RUN apt-get update
|
||||
RUN apt-get -y install build-essential
|
||||
FROM python:3.6.2
|
||||
|
||||
# Install TA-lib
|
||||
RUN wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
|
||||
RUN tar zxvf ta-lib-0.4.0-src.tar.gz
|
||||
RUN cd ta-lib && ./configure && make && make install
|
||||
RUN apt-get update && apt-get -y install build-essential && apt-get clean
|
||||
RUN curl -L http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz | \
|
||||
tar xzvf - && \
|
||||
cd ta-lib && \
|
||||
./configure && make && make install && \
|
||||
cd .. && rm -rf ta-lib
|
||||
ENV LD_LIBRARY_PATH /usr/local/lib
|
||||
|
||||
# Prepare environment
|
||||
RUN mkdir /freqtrade
|
||||
COPY . /freqtrade/
|
||||
WORKDIR /freqtrade
|
||||
|
||||
# Install dependencies and execute
|
||||
# Install dependencies
|
||||
COPY requirements.txt /freqtrade/
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
# Install and execute
|
||||
COPY . /freqtrade/
|
||||
RUN pip install -e .
|
||||
CMD ["freqtrade"]
|
||||
|
|
60
README.md
60
README.md
|
@ -30,15 +30,14 @@ in minutes and the value is the minimum ROI in percent.
|
|||
See the example below:
|
||||
```
|
||||
"minimal_roi": {
|
||||
"2880": 0.005, # Sell after 48 hours if there is at least 0.5% profit
|
||||
"1440": 0.01, # Sell after 24 hours if there is at least 1% profit
|
||||
"720": 0.02, # Sell after 12 hours if there is at least 2% profit
|
||||
"360": 0.02, # Sell after 6 hours if there is at least 2% profit
|
||||
"0": 0.025 # Sell immediately if there is at least 2.5% profit
|
||||
"50": 0.0, # Sell after 30 minutes if the profit is not negative
|
||||
"40": 0.01, # Sell after 25 minutes if there is at least 1% profit
|
||||
"30": 0.02, # Sell after 15 minutes if there is at least 2% profit
|
||||
"0": 0.045 # Sell immediately if there is at least 4.5% profit
|
||||
},
|
||||
```
|
||||
|
||||
`stoploss` is loss in percentage that should trigger a sale.
|
||||
`stoploss` is loss in percentage that should trigger a sale.
|
||||
For example value `-0.10` will cause immediate sell if the
|
||||
profit dips below -10% for a given trade. This parameter is optional.
|
||||
|
||||
|
@ -47,7 +46,9 @@ Possible values are `running` or `stopped`. (default=`running`)
|
|||
If the value is `stopped` the bot has to be started with `/start` first.
|
||||
|
||||
`ask_last_balance` sets the bidding price. Value `0.0` will use `ask` price, `1.0` will
|
||||
use the `last` price and values between those interpolate between ask and last price. Using `ask` price will guarantee quick success in bid, but bot will also end up paying more then would probably have been necessary.
|
||||
use the `last` price and values between those interpolate between ask and last
|
||||
price. Using `ask` price will guarantee quick success in bid, but bot will also
|
||||
end up paying more then would probably have been necessary.
|
||||
|
||||
The other values should be self-explanatory,
|
||||
if not feel free to raise a github issue.
|
||||
|
@ -84,16 +85,57 @@ $ pytest
|
|||
This will by default skip the slow running backtest set. To run backtest set:
|
||||
|
||||
```
|
||||
$ BACKTEST=true pytest
|
||||
$ BACKTEST=true pytest -s freqtrade/tests/test_backtesting.py
|
||||
```
|
||||
|
||||
#### Docker
|
||||
|
||||
Building the image:
|
||||
|
||||
```
|
||||
$ cd freqtrade
|
||||
$ docker build -t freqtrade .
|
||||
$ docker run --rm -it freqtrade
|
||||
```
|
||||
|
||||
For security reasons, your configuration file will not be included in the
|
||||
image, you will need to bind mount it. It is also advised to bind mount
|
||||
a SQLite database file (see second example) to keep it between updates.
|
||||
|
||||
You can run a one-off container that is immediately deleted upon exiting with
|
||||
the following command (config.json must be in the current working directory):
|
||||
|
||||
```
|
||||
$ docker run --rm -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
|
||||
```
|
||||
|
||||
To run a restartable instance in the background (feel free to place your
|
||||
configuration and database files wherever it feels comfortable on your
|
||||
filesystem):
|
||||
|
||||
```
|
||||
$ cd ~/.freq
|
||||
$ touch tradesv2.sqlite
|
||||
$ docker run -d \
|
||||
--name freqtrade \
|
||||
-v ~/.freq/config.json:/freqtrade/config.json \
|
||||
-v ~/.freq/tradesv2.sqlite:/freqtrade/tradesv2.sqlite \
|
||||
freqtrade
|
||||
```
|
||||
If you are using `dry_run=True` you need to bind `tradesv2.dry_run.sqlite` instead of `tradesv2.sqlite`.
|
||||
|
||||
You can then use the following commands to monitor and manage your container:
|
||||
|
||||
```
|
||||
$ docker logs freqtrade
|
||||
$ docker logs -f freqtrade
|
||||
$ docker restart freqtrade
|
||||
$ docker stop freqtrade
|
||||
$ docker start freqtrade
|
||||
```
|
||||
|
||||
You do not need to rebuild the image for configuration
|
||||
changes, it will suffice to edit `config.json` and restart the container.
|
||||
|
||||
#### Contributing
|
||||
|
||||
Feel like our bot is missing a feature? We welcome your pull requests! Few pointers for contributions:
|
||||
|
|
|
@ -4,10 +4,10 @@
|
|||
"stake_amount": 0.05,
|
||||
"dry_run": false,
|
||||
"minimal_roi": {
|
||||
"60": 0.0,
|
||||
"40": 0.01,
|
||||
"20": 0.02,
|
||||
"0": 0.03
|
||||
"50": 0.0,
|
||||
"40": 0.01,
|
||||
"30": 0.02,
|
||||
"0": 0.045
|
||||
},
|
||||
"stoploss": -0.40,
|
||||
"bid_strategy": {
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
__version__ = '0.11.0'
|
||||
__version__ = '0.12.0'
|
||||
|
||||
from . import main
|
||||
|
|
|
@ -6,7 +6,8 @@ import arrow
|
|||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.exchange import get_ticker_history
|
||||
from freqtrade import exchange
|
||||
from freqtrade.exchange import Bittrex, get_ticker_history
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
|
@ -23,23 +24,23 @@ def parse_ticker_dataframe(ticker: list, minimum_date: arrow.Arrow) -> DataFrame
|
|||
.drop('BV', 1) \
|
||||
.rename(columns={'C':'close', 'V':'volume', 'O':'open', 'H':'high', 'L':'low', 'T':'date'}) \
|
||||
.sort_values('date')
|
||||
return df[df['date'].map(arrow.get) > minimum_date]
|
||||
return df
|
||||
|
||||
|
||||
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
"""
|
||||
dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.22)
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
stoch = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch['fastd']
|
||||
dataframe['fastk'] = stoch['fastk']
|
||||
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
||||
dataframe['cci'] = ta.CCI(dataframe, timeperiod=5)
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=100)
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=4)
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
dataframe['cci'] = ta.CCI(dataframe)
|
||||
return dataframe
|
||||
|
||||
|
||||
|
@ -49,14 +50,12 @@ def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
|||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
|
||||
dataframe.loc[
|
||||
(dataframe['close'] < dataframe['sma']) &
|
||||
(dataframe['cci'] < -100) &
|
||||
(dataframe['tema'] <= dataframe['blower']) &
|
||||
(dataframe['mfi'] < 30) &
|
||||
(dataframe['fastd'] < 20) &
|
||||
(dataframe['adx'] > 20),
|
||||
(dataframe['mfi'] < 25) &
|
||||
(dataframe['fastd'] < 25) &
|
||||
(dataframe['adx'] > 30),
|
||||
'buy'] = 1
|
||||
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
||||
|
||||
|
@ -119,20 +118,26 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
|
|||
import matplotlib.pyplot as plt
|
||||
|
||||
# Two subplots sharing x axis
|
||||
fig, (ax1, ax2) = plt.subplots(2, sharex=True)
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
||||
fig.suptitle(pair, fontsize=14, fontweight='bold')
|
||||
ax1.plot(dataframe.index.values, dataframe['sar'], 'g_', label='pSAR')
|
||||
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
|
||||
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
|
||||
ax1.plot(dataframe.index.values, dataframe['sma'], '--', label='SMA')
|
||||
ax1.plot(dataframe.index.values, dataframe['tema'], ':', label='TEMA')
|
||||
ax1.plot(dataframe.index.values, dataframe['blower'], '-.', label='BB low')
|
||||
ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy')
|
||||
ax1.legend()
|
||||
|
||||
# ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
|
||||
ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
|
||||
ax2.plot(dataframe.index.values, dataframe['mfi'], label='MFI')
|
||||
# ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
|
||||
ax2.legend()
|
||||
|
||||
ax3.plot(dataframe.index.values, dataframe['fastk'], label='k')
|
||||
ax3.plot(dataframe.index.values, dataframe['fastd'], label='d')
|
||||
ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
|
||||
ax3.legend()
|
||||
|
||||
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
||||
# all but bottom plot.
|
||||
fig.subplots_adjust(hspace=0)
|
||||
|
@ -143,6 +148,7 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
|
|||
if __name__ == '__main__':
|
||||
# Install PYQT5==5.9 manually if you want to test this helper function
|
||||
while True:
|
||||
exchange.EXCHANGE = Bittrex({'key': '', 'secret': ''})
|
||||
test_pair = 'BTC_ETH'
|
||||
# for pair in ['BTC_ANT', 'BTC_ETH', 'BTC_GNT', 'BTC_ETC']:
|
||||
# get_buy_signal(pair)
|
||||
|
|
|
@ -26,10 +26,6 @@ class Bittrex(Exchange):
|
|||
# Sleep time to avoid rate limits, used in the main loop
|
||||
SLEEP_TIME: float = 25
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self.__class__.__name__
|
||||
|
||||
@property
|
||||
def sleep_time(self) -> float:
|
||||
return self.SLEEP_TIME
|
||||
|
@ -40,13 +36,6 @@ class Bittrex(Exchange):
|
|||
_EXCHANGE_CONF.update(config)
|
||||
_API = _Bittrex(api_key=_EXCHANGE_CONF['key'], api_secret=_EXCHANGE_CONF['secret'])
|
||||
|
||||
# Check if all pairs are available
|
||||
markets = self.get_markets()
|
||||
exchange_name = self.name
|
||||
for pair in _EXCHANGE_CONF['pair_whitelist']:
|
||||
if pair not in markets:
|
||||
raise RuntimeError('Pair {} is not available at {}'.format(pair, exchange_name))
|
||||
|
||||
def buy(self, pair: str, rate: float, amount: float) -> str:
|
||||
data = _API.buy_limit(pair.replace('_', '-'), amount, rate)
|
||||
if not data['success']:
|
||||
|
|
|
@ -45,6 +45,7 @@ def init(config: dict) -> None:
|
|||
CommandHandler('stop', _stop),
|
||||
CommandHandler('forcesell', _forcesell),
|
||||
CommandHandler('performance', _performance),
|
||||
CommandHandler('help', _help),
|
||||
]
|
||||
for handle in handles:
|
||||
_updater.dispatcher.add_handler(handle)
|
||||
|
@ -301,6 +302,27 @@ def _performance(bot: Bot, update: Update) -> None:
|
|||
send_msg(message, parse_mode=ParseMode.HTML)
|
||||
|
||||
|
||||
@authorized_only
|
||||
def _help(bot: Bot, update: Update) -> None:
|
||||
"""
|
||||
Handler for /help.
|
||||
Show commands of the bot
|
||||
:param bot: telegram bot
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
message = """
|
||||
*/start:* `Starts the trader`
|
||||
*/stop:* `Stops the trader`
|
||||
*/status:* `Lists all open trades`
|
||||
*/profit:* `Lists cumulative profit from all finished trades`
|
||||
*/forcesell <trade_id>:* `Instantly sells the given trade, regardless of profit`
|
||||
*/performance:* `Show performance of each finished trade grouped by pair`
|
||||
*/help:* `This help message`
|
||||
"""
|
||||
send_msg(message, bot=bot)
|
||||
|
||||
|
||||
def send_msg(msg: str, bot: Bot = None, parse_mode: ParseMode = ParseMode.MARKDOWN) -> None:
|
||||
"""
|
||||
Send given markdown message
|
||||
|
|
|
@ -18,7 +18,7 @@ def print_results(results):
|
|||
len(results.index),
|
||||
results.profit.mean() * 100.0,
|
||||
results.profit.sum(),
|
||||
results.duration.mean()*5
|
||||
results.duration.mean() * 5
|
||||
))
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -30,10 +30,10 @@ def pairs():
|
|||
def conf():
|
||||
return {
|
||||
"minimal_roi": {
|
||||
"60": 0.0,
|
||||
"50": 0.0,
|
||||
"40": 0.01,
|
||||
"20": 0.02,
|
||||
"0": 0.03
|
||||
"30": 0.02,
|
||||
"0": 0.045
|
||||
},
|
||||
"stoploss": -0.40
|
||||
}
|
||||
|
|
166
freqtrade/tests/test_hyperopt.py
Normal file
166
freqtrade/tests/test_hyperopt.py
Normal file
|
@ -0,0 +1,166 @@
|
|||
# pragma pylint: disable=missing-docstring
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from functools import reduce
|
||||
|
||||
import pytest
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from hyperopt import fmin, tpe, hp
|
||||
|
||||
from freqtrade.analyze import analyze_ticker
|
||||
from freqtrade.main import should_sell
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
|
||||
|
||||
def print_results(results):
|
||||
print('Made {} buys. Average profit {:.2f}%. Total profit was {:.3f}. Average duration {:.1f} mins.'.format(
|
||||
len(results.index),
|
||||
results.profit.mean() * 100.0,
|
||||
results.profit.sum(),
|
||||
results.duration.mean() * 5
|
||||
))
|
||||
|
||||
@pytest.fixture
|
||||
def pairs():
|
||||
return ['btc-neo', 'btc-eth', 'btc-omg', 'btc-edg', 'btc-pay',
|
||||
'btc-pivx', 'btc-qtum', 'btc-mtl', 'btc-etc', 'btc-ltc']
|
||||
|
||||
@pytest.fixture
|
||||
def conf():
|
||||
return {
|
||||
"minimal_roi": {
|
||||
"40": 0.0,
|
||||
"30": 0.01,
|
||||
"20": 0.02,
|
||||
"0": 0.04
|
||||
},
|
||||
"stoploss": -0.05
|
||||
}
|
||||
|
||||
|
||||
def backtest(conf, pairs, mocker, buy_strategy):
|
||||
trades = []
|
||||
mocker.patch.dict('freqtrade.main._CONF', conf)
|
||||
for pair in pairs:
|
||||
with open('freqtrade/tests/testdata/'+pair+'.json') as data_file:
|
||||
data = json.load(data_file)
|
||||
|
||||
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=data)
|
||||
mocker.patch('arrow.utcnow', return_value=arrow.get('2017-08-20T14:50:00'))
|
||||
mocker.patch('freqtrade.analyze.populate_buy_trend', side_effect=buy_strategy)
|
||||
ticker = analyze_ticker(pair)
|
||||
# for each buy point
|
||||
for index, row in ticker[ticker.buy == 1].iterrows():
|
||||
trade = Trade(
|
||||
open_rate=row['close'],
|
||||
open_date=arrow.get(row['date']).datetime,
|
||||
amount=1,
|
||||
)
|
||||
# calculate win/lose forwards from buy point
|
||||
for index2, row2 in ticker[index:].iterrows():
|
||||
if should_sell(trade, row2['close'], arrow.get(row2['date']).datetime):
|
||||
current_profit = (row2['close'] - trade.open_rate) / trade.open_rate
|
||||
|
||||
trades.append((pair, current_profit, index2 - index))
|
||||
break
|
||||
|
||||
labels = ['currency', 'profit', 'duration']
|
||||
results = DataFrame.from_records(trades, columns=labels)
|
||||
|
||||
print_results(results)
|
||||
|
||||
# set the value below to suit your number concurrent trades so its realistic to 20days of data
|
||||
TARGET_TRADES = 1200
|
||||
if results.profit.sum() == 0 or results.profit.mean() == 0:
|
||||
return 49999999999 # avoid division by zero, return huge value to discard result
|
||||
return abs(len(results.index) - 1200.1) / (results.profit.sum() ** 2) * results.duration.mean() # the smaller the better
|
||||
|
||||
def buy_strategy_generator(params):
|
||||
print(params)
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if params['below_sma']['enabled']:
|
||||
conditions.append(dataframe['close'] < dataframe['sma'])
|
||||
if params['over_sma']['enabled']:
|
||||
conditions.append(dataframe['close'] > dataframe['sma'])
|
||||
if params['mfi']['enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi']['value'])
|
||||
if params['fastd']['enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd']['value'])
|
||||
if params['adx']['enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx']['value'])
|
||||
if params['cci']['enabled']:
|
||||
conditions.append(dataframe['cci'] < params['cci']['value'])
|
||||
if params['over_sar']['enabled']:
|
||||
conditions.append(dataframe['close'] > dataframe['sar'])
|
||||
if params['uptrend_sma']['enabled']:
|
||||
prevsma = dataframe['sma'].shift(1)
|
||||
conditions.append(dataframe['sma'] > prevsma)
|
||||
|
||||
prev_fastd = dataframe['fastd'].shift(1)
|
||||
# TRIGGERS
|
||||
triggers = {
|
||||
'lower_bb': dataframe['tema'] <= dataframe['blower'],
|
||||
'faststoch10': (dataframe['fastd'] >= 10) & (prev_fastd < 10),
|
||||
}
|
||||
conditions.append(triggers.get(params['trigger']['type']))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
||||
|
||||
return dataframe
|
||||
return populate_buy_trend
|
||||
|
||||
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
|
||||
def test_hyperopt(conf, pairs, mocker):
|
||||
|
||||
def optimizer(params):
|
||||
return backtest(conf, pairs, mocker, buy_strategy_generator(params))
|
||||
|
||||
space = {
|
||||
'mfi': hp.choice('mfi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.uniform('mfi-value', 2, 40)}
|
||||
]),
|
||||
'fastd': hp.choice('fastd', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.uniform('fastd-value', 2, 40)}
|
||||
]),
|
||||
'adx': hp.choice('adx', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.uniform('adx-value', 2, 40)}
|
||||
]),
|
||||
'cci': hp.choice('cci', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.uniform('cci-value', -200, -100)}
|
||||
]),
|
||||
'below_sma': hp.choice('below_sma', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'over_sma': hp.choice('over_sma', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'over_sar': hp.choice('over_sar', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'uptrend_sma': hp.choice('uptrend_sma', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'trigger': hp.choice('trigger', [
|
||||
{'type': 'lower_bb'},
|
||||
{'type': 'faststoch10'}
|
||||
]),
|
||||
}
|
||||
|
||||
print('Best parameters {}'.format(fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=40)))
|
16
freqtrade/tests/testdata/download_backtest_data.py
vendored
Normal file
16
freqtrade/tests/testdata/download_backtest_data.py
vendored
Normal file
|
@ -0,0 +1,16 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
"""This script generate json data from bittrex"""
|
||||
|
||||
from urllib.request import urlopen
|
||||
|
||||
CURRENCIES = ["ok", "neo", "dash", "etc", "eth", "snt"]
|
||||
|
||||
for cur in CURRENCIES:
|
||||
url1 = 'https://bittrex.com/Api/v2.0/pub/market/GetTicks?marketName=BTC-'
|
||||
url = url1+cur+'&tickInterval=fiveMin'
|
||||
x = urlopen(url)
|
||||
json_data = x.read()
|
||||
json_str = str(json_data, 'utf-8')
|
||||
with open('btc-'+cur+'.json', 'w') as file:
|
||||
file.write(json_str)
|
|
@ -1,6 +1,6 @@
|
|||
-e git+https://github.com/ericsomdahl/python-bittrex.git@d7033d0#egg=python-bittrex
|
||||
SQLAlchemy==1.1.13
|
||||
python-telegram-bot==8.0
|
||||
SQLAlchemy==1.1.14
|
||||
python-telegram-bot==8.1.1
|
||||
arrow==0.10.0
|
||||
requests==2.18.4
|
||||
urllib3==1.22
|
||||
|
@ -11,10 +11,13 @@ scipy==0.19.1
|
|||
jsonschema==2.6.0
|
||||
numpy==1.13.3
|
||||
TA-Lib==0.4.10
|
||||
pytest==3.2.2
|
||||
pytest==3.2.3
|
||||
pytest-mock==1.6.3
|
||||
pytest-cov==2.5.1
|
||||
hyperopt==0.1
|
||||
# do not upgrade networkx before this is fixed https://github.com/hyperopt/hyperopt/issues/325
|
||||
networkx==1.11
|
||||
|
||||
# Required for plotting data
|
||||
#matplotlib==2.0.2
|
||||
#matplotlib==2.1.0
|
||||
#PYQT5==5.9
|
|
@ -1,5 +0,0 @@
|
|||
[aliases]
|
||||
test=pytest
|
||||
|
||||
[tool:pytest]
|
||||
addopts = --cov=freqtrade --cov-config=.coveragerc freqtrade/tests/
|
Loading…
Reference in New Issue
Block a user