Merge branch 'release/0.12.0'

This commit is contained in:
gcarq 2017-10-24 18:14:37 +02:00
commit 6b15cb9b10
14 changed files with 310 additions and 62 deletions

6
.dockerignore Normal file
View File

@ -0,0 +1,6 @@
.git
.gitignore
Dockerfile
.dockerignore
config.json*
*.sqlite

View File

@ -1,20 +1,23 @@
FROM python:3.6.2
RUN apt-get update
RUN apt-get -y install build-essential
FROM python:3.6.2
# Install TA-lib
RUN wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
RUN tar zxvf ta-lib-0.4.0-src.tar.gz
RUN cd ta-lib && ./configure && make && make install
RUN apt-get update && apt-get -y install build-essential && apt-get clean
RUN curl -L http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz | \
tar xzvf - && \
cd ta-lib && \
./configure && make && make install && \
cd .. && rm -rf ta-lib
ENV LD_LIBRARY_PATH /usr/local/lib
# Prepare environment
RUN mkdir /freqtrade
COPY . /freqtrade/
WORKDIR /freqtrade
# Install dependencies and execute
# Install dependencies
COPY requirements.txt /freqtrade/
RUN pip install -r requirements.txt
# Install and execute
COPY . /freqtrade/
RUN pip install -e .
CMD ["freqtrade"]

View File

@ -30,15 +30,14 @@ in minutes and the value is the minimum ROI in percent.
See the example below:
```
"minimal_roi": {
"2880": 0.005, # Sell after 48 hours if there is at least 0.5% profit
"1440": 0.01, # Sell after 24 hours if there is at least 1% profit
"720": 0.02, # Sell after 12 hours if there is at least 2% profit
"360": 0.02, # Sell after 6 hours if there is at least 2% profit
"0": 0.025 # Sell immediately if there is at least 2.5% profit
"50": 0.0, # Sell after 30 minutes if the profit is not negative
"40": 0.01, # Sell after 25 minutes if there is at least 1% profit
"30": 0.02, # Sell after 15 minutes if there is at least 2% profit
"0": 0.045 # Sell immediately if there is at least 4.5% profit
},
```
`stoploss` is loss in percentage that should trigger a sale.
`stoploss` is loss in percentage that should trigger a sale.
For example value `-0.10` will cause immediate sell if the
profit dips below -10% for a given trade. This parameter is optional.
@ -47,7 +46,9 @@ Possible values are `running` or `stopped`. (default=`running`)
If the value is `stopped` the bot has to be started with `/start` first.
`ask_last_balance` sets the bidding price. Value `0.0` will use `ask` price, `1.0` will
use the `last` price and values between those interpolate between ask and last price. Using `ask` price will guarantee quick success in bid, but bot will also end up paying more then would probably have been necessary.
use the `last` price and values between those interpolate between ask and last
price. Using `ask` price will guarantee quick success in bid, but bot will also
end up paying more then would probably have been necessary.
The other values should be self-explanatory,
if not feel free to raise a github issue.
@ -84,16 +85,57 @@ $ pytest
This will by default skip the slow running backtest set. To run backtest set:
```
$ BACKTEST=true pytest
$ BACKTEST=true pytest -s freqtrade/tests/test_backtesting.py
```
#### Docker
Building the image:
```
$ cd freqtrade
$ docker build -t freqtrade .
$ docker run --rm -it freqtrade
```
For security reasons, your configuration file will not be included in the
image, you will need to bind mount it. It is also advised to bind mount
a SQLite database file (see second example) to keep it between updates.
You can run a one-off container that is immediately deleted upon exiting with
the following command (config.json must be in the current working directory):
```
$ docker run --rm -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
To run a restartable instance in the background (feel free to place your
configuration and database files wherever it feels comfortable on your
filesystem):
```
$ cd ~/.freq
$ touch tradesv2.sqlite
$ docker run -d \
--name freqtrade \
-v ~/.freq/config.json:/freqtrade/config.json \
-v ~/.freq/tradesv2.sqlite:/freqtrade/tradesv2.sqlite \
freqtrade
```
If you are using `dry_run=True` you need to bind `tradesv2.dry_run.sqlite` instead of `tradesv2.sqlite`.
You can then use the following commands to monitor and manage your container:
```
$ docker logs freqtrade
$ docker logs -f freqtrade
$ docker restart freqtrade
$ docker stop freqtrade
$ docker start freqtrade
```
You do not need to rebuild the image for configuration
changes, it will suffice to edit `config.json` and restart the container.
#### Contributing
Feel like our bot is missing a feature? We welcome your pull requests! Few pointers for contributions:

View File

@ -4,10 +4,10 @@
"stake_amount": 0.05,
"dry_run": false,
"minimal_roi": {
"60": 0.0,
"40": 0.01,
"20": 0.02,
"0": 0.03
"50": 0.0,
"40": 0.01,
"30": 0.02,
"0": 0.045
},
"stoploss": -0.40,
"bid_strategy": {

View File

@ -1,3 +1,3 @@
__version__ = '0.11.0'
__version__ = '0.12.0'
from . import main

View File

@ -6,7 +6,8 @@ import arrow
import talib.abstract as ta
from pandas import DataFrame
from freqtrade.exchange import get_ticker_history
from freqtrade import exchange
from freqtrade.exchange import Bittrex, get_ticker_history
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
@ -23,23 +24,23 @@ def parse_ticker_dataframe(ticker: list, minimum_date: arrow.Arrow) -> DataFrame
.drop('BV', 1) \
.rename(columns={'C':'close', 'V':'volume', 'O':'open', 'H':'high', 'L':'low', 'T':'date'}) \
.sort_values('date')
return df[df['date'].map(arrow.get) > minimum_date]
return df
def populate_indicators(dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
"""
dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.22)
dataframe['sar'] = ta.SAR(dataframe)
dataframe['adx'] = ta.ADX(dataframe)
stoch = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch['fastd']
dataframe['fastk'] = stoch['fastk']
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
dataframe['cci'] = ta.CCI(dataframe, timeperiod=5)
dataframe['sma'] = ta.SMA(dataframe, timeperiod=100)
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=4)
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['cci'] = ta.CCI(dataframe)
return dataframe
@ -49,14 +50,12 @@ def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(dataframe['close'] < dataframe['sma']) &
(dataframe['cci'] < -100) &
(dataframe['tema'] <= dataframe['blower']) &
(dataframe['mfi'] < 30) &
(dataframe['fastd'] < 20) &
(dataframe['adx'] > 20),
(dataframe['mfi'] < 25) &
(dataframe['fastd'] < 25) &
(dataframe['adx'] > 30),
'buy'] = 1
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
@ -119,20 +118,26 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
import matplotlib.pyplot as plt
# Two subplots sharing x axis
fig, (ax1, ax2) = plt.subplots(2, sharex=True)
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
fig.suptitle(pair, fontsize=14, fontweight='bold')
ax1.plot(dataframe.index.values, dataframe['sar'], 'g_', label='pSAR')
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
ax1.plot(dataframe.index.values, dataframe['sma'], '--', label='SMA')
ax1.plot(dataframe.index.values, dataframe['tema'], ':', label='TEMA')
ax1.plot(dataframe.index.values, dataframe['blower'], '-.', label='BB low')
ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy')
ax1.legend()
# ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
ax2.plot(dataframe.index.values, dataframe['mfi'], label='MFI')
# ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
ax2.legend()
ax3.plot(dataframe.index.values, dataframe['fastk'], label='k')
ax3.plot(dataframe.index.values, dataframe['fastd'], label='d')
ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
ax3.legend()
# Fine-tune figure; make subplots close to each other and hide x ticks for
# all but bottom plot.
fig.subplots_adjust(hspace=0)
@ -143,6 +148,7 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
if __name__ == '__main__':
# Install PYQT5==5.9 manually if you want to test this helper function
while True:
exchange.EXCHANGE = Bittrex({'key': '', 'secret': ''})
test_pair = 'BTC_ETH'
# for pair in ['BTC_ANT', 'BTC_ETH', 'BTC_GNT', 'BTC_ETC']:
# get_buy_signal(pair)

View File

@ -26,10 +26,6 @@ class Bittrex(Exchange):
# Sleep time to avoid rate limits, used in the main loop
SLEEP_TIME: float = 25
@property
def name(self) -> str:
return self.__class__.__name__
@property
def sleep_time(self) -> float:
return self.SLEEP_TIME
@ -40,13 +36,6 @@ class Bittrex(Exchange):
_EXCHANGE_CONF.update(config)
_API = _Bittrex(api_key=_EXCHANGE_CONF['key'], api_secret=_EXCHANGE_CONF['secret'])
# Check if all pairs are available
markets = self.get_markets()
exchange_name = self.name
for pair in _EXCHANGE_CONF['pair_whitelist']:
if pair not in markets:
raise RuntimeError('Pair {} is not available at {}'.format(pair, exchange_name))
def buy(self, pair: str, rate: float, amount: float) -> str:
data = _API.buy_limit(pair.replace('_', '-'), amount, rate)
if not data['success']:

View File

@ -45,6 +45,7 @@ def init(config: dict) -> None:
CommandHandler('stop', _stop),
CommandHandler('forcesell', _forcesell),
CommandHandler('performance', _performance),
CommandHandler('help', _help),
]
for handle in handles:
_updater.dispatcher.add_handler(handle)
@ -301,6 +302,27 @@ def _performance(bot: Bot, update: Update) -> None:
send_msg(message, parse_mode=ParseMode.HTML)
@authorized_only
def _help(bot: Bot, update: Update) -> None:
"""
Handler for /help.
Show commands of the bot
:param bot: telegram bot
:param update: message update
:return: None
"""
message = """
*/start:* `Starts the trader`
*/stop:* `Stops the trader`
*/status:* `Lists all open trades`
*/profit:* `Lists cumulative profit from all finished trades`
*/forcesell <trade_id>:* `Instantly sells the given trade, regardless of profit`
*/performance:* `Show performance of each finished trade grouped by pair`
*/help:* `This help message`
"""
send_msg(message, bot=bot)
def send_msg(msg: str, bot: Bot = None, parse_mode: ParseMode = ParseMode.MARKDOWN) -> None:
"""
Send given markdown message

View File

@ -18,7 +18,7 @@ def print_results(results):
len(results.index),
results.profit.mean() * 100.0,
results.profit.sum(),
results.duration.mean()*5
results.duration.mean() * 5
))
@pytest.fixture
@ -30,10 +30,10 @@ def pairs():
def conf():
return {
"minimal_roi": {
"60": 0.0,
"50": 0.0,
"40": 0.01,
"20": 0.02,
"0": 0.03
"30": 0.02,
"0": 0.045
},
"stoploss": -0.40
}

View File

@ -0,0 +1,166 @@
# pragma pylint: disable=missing-docstring
import json
import logging
import os
from functools import reduce
import pytest
import arrow
from pandas import DataFrame
from hyperopt import fmin, tpe, hp
from freqtrade.analyze import analyze_ticker
from freqtrade.main import should_sell
from freqtrade.persistence import Trade
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
def print_results(results):
print('Made {} buys. Average profit {:.2f}%. Total profit was {:.3f}. Average duration {:.1f} mins.'.format(
len(results.index),
results.profit.mean() * 100.0,
results.profit.sum(),
results.duration.mean() * 5
))
@pytest.fixture
def pairs():
return ['btc-neo', 'btc-eth', 'btc-omg', 'btc-edg', 'btc-pay',
'btc-pivx', 'btc-qtum', 'btc-mtl', 'btc-etc', 'btc-ltc']
@pytest.fixture
def conf():
return {
"minimal_roi": {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
},
"stoploss": -0.05
}
def backtest(conf, pairs, mocker, buy_strategy):
trades = []
mocker.patch.dict('freqtrade.main._CONF', conf)
for pair in pairs:
with open('freqtrade/tests/testdata/'+pair+'.json') as data_file:
data = json.load(data_file)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=data)
mocker.patch('arrow.utcnow', return_value=arrow.get('2017-08-20T14:50:00'))
mocker.patch('freqtrade.analyze.populate_buy_trend', side_effect=buy_strategy)
ticker = analyze_ticker(pair)
# for each buy point
for index, row in ticker[ticker.buy == 1].iterrows():
trade = Trade(
open_rate=row['close'],
open_date=arrow.get(row['date']).datetime,
amount=1,
)
# calculate win/lose forwards from buy point
for index2, row2 in ticker[index:].iterrows():
if should_sell(trade, row2['close'], arrow.get(row2['date']).datetime):
current_profit = (row2['close'] - trade.open_rate) / trade.open_rate
trades.append((pair, current_profit, index2 - index))
break
labels = ['currency', 'profit', 'duration']
results = DataFrame.from_records(trades, columns=labels)
print_results(results)
# set the value below to suit your number concurrent trades so its realistic to 20days of data
TARGET_TRADES = 1200
if results.profit.sum() == 0 or results.profit.mean() == 0:
return 49999999999 # avoid division by zero, return huge value to discard result
return abs(len(results.index) - 1200.1) / (results.profit.sum() ** 2) * results.duration.mean() # the smaller the better
def buy_strategy_generator(params):
print(params)
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if params['below_sma']['enabled']:
conditions.append(dataframe['close'] < dataframe['sma'])
if params['over_sma']['enabled']:
conditions.append(dataframe['close'] > dataframe['sma'])
if params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if params['fastd']['enabled']:
conditions.append(dataframe['fastd'] < params['fastd']['value'])
if params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if params['cci']['enabled']:
conditions.append(dataframe['cci'] < params['cci']['value'])
if params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if params['uptrend_sma']['enabled']:
prevsma = dataframe['sma'].shift(1)
conditions.append(dataframe['sma'] > prevsma)
prev_fastd = dataframe['fastd'].shift(1)
# TRIGGERS
triggers = {
'lower_bb': dataframe['tema'] <= dataframe['blower'],
'faststoch10': (dataframe['fastd'] >= 10) & (prev_fastd < 10),
}
conditions.append(triggers.get(params['trigger']['type']))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
return dataframe
return populate_buy_trend
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
def test_hyperopt(conf, pairs, mocker):
def optimizer(params):
return backtest(conf, pairs, mocker, buy_strategy_generator(params))
space = {
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('mfi-value', 2, 40)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('fastd-value', 2, 40)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('adx-value', 2, 40)}
]),
'cci': hp.choice('cci', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('cci-value', -200, -100)}
]),
'below_sma': hp.choice('below_sma', [
{'enabled': False},
{'enabled': True}
]),
'over_sma': hp.choice('over_sma', [
{'enabled': False},
{'enabled': True}
]),
'over_sar': hp.choice('over_sar', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_sma': hp.choice('uptrend_sma', [
{'enabled': False},
{'enabled': True}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'faststoch10'}
]),
}
print('Best parameters {}'.format(fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=40)))

View File

@ -0,0 +1,16 @@
#!/usr/bin/env python3
"""This script generate json data from bittrex"""
from urllib.request import urlopen
CURRENCIES = ["ok", "neo", "dash", "etc", "eth", "snt"]
for cur in CURRENCIES:
url1 = 'https://bittrex.com/Api/v2.0/pub/market/GetTicks?marketName=BTC-'
url = url1+cur+'&tickInterval=fiveMin'
x = urlopen(url)
json_data = x.read()
json_str = str(json_data, 'utf-8')
with open('btc-'+cur+'.json', 'w') as file:
file.write(json_str)

View File

@ -1,6 +1,6 @@
-e git+https://github.com/ericsomdahl/python-bittrex.git@d7033d0#egg=python-bittrex
SQLAlchemy==1.1.13
python-telegram-bot==8.0
SQLAlchemy==1.1.14
python-telegram-bot==8.1.1
arrow==0.10.0
requests==2.18.4
urllib3==1.22
@ -11,10 +11,13 @@ scipy==0.19.1
jsonschema==2.6.0
numpy==1.13.3
TA-Lib==0.4.10
pytest==3.2.2
pytest==3.2.3
pytest-mock==1.6.3
pytest-cov==2.5.1
hyperopt==0.1
# do not upgrade networkx before this is fixed https://github.com/hyperopt/hyperopt/issues/325
networkx==1.11
# Required for plotting data
#matplotlib==2.0.2
#matplotlib==2.1.0
#PYQT5==5.9

View File

@ -1,5 +0,0 @@
[aliases]
test=pytest
[tool:pytest]
addopts = --cov=freqtrade --cov-config=.coveragerc freqtrade/tests/

View File

@ -17,7 +17,7 @@ setup(name='freqtrade',
install_requires=[
'python-bittrex==0.1.3',
'SQLAlchemy==1.1.13',
'python-telegram-bot==8.0',
'python-telegram-bot==8.1.1',
'arrow==0.10.0',
'requests==2.18.4',
'urllib3==1.22',