start adding tests

This commit is contained in:
robcaulk 2022-07-19 16:16:44 +02:00
parent ed0f8b1189
commit 714d9534b6
3 changed files with 175 additions and 24 deletions

View File

@ -410,6 +410,11 @@ class FreqaiDataKitchen:
bt_split: the backtesting length (dats). Specified in user configuration file
"""
if not isinstance(train_split, int) or train_split < 1:
raise OperationalException(
"train_period_days must be an integer greater than 0. "
f"Got {train_split}."
)
train_period_days = train_split * SECONDS_IN_DAY
bt_period = bt_split * SECONDS_IN_DAY
@ -742,6 +747,13 @@ class FreqaiDataKitchen:
return
def create_fulltimerange(self, backtest_tr: str, backtest_period_days: int) -> str:
if not isinstance(backtest_period_days, int):
raise OperationalException('backtest_period_days must be an integer')
if backtest_period_days < 0:
raise OperationalException('backtest_period_days must be positive')
backtest_timerange = TimeRange.parse_timerange(backtest_tr)
if backtest_timerange.stopts == 0:
@ -869,30 +881,6 @@ class FreqaiDataKitchen:
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
# self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts))
# enables persistence, but not fully implemented into save/load data yer
# self.data['live_trained_timerange'] = str(int(trained_timerange.stopts))
# SUPERCEDED
# def download_new_data_for_retraining(self, timerange: TimeRange, metadata: dict,
# strategy: IStrategy) -> None:
# exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'],
# self.config, validate=False, freqai=True)
# # exchange = strategy.dp._exchange # closes ccxt session
# pairs = copy.deepcopy(self.freqai_config.get('corr_pairlist', []))
# if str(metadata['pair']) not in pairs:
# pairs.append(str(metadata['pair']))
# refresh_backtest_ohlcv_data(
# exchange, pairs=pairs, timeframes=self.freqai_config.get('timeframes'),
# datadir=self.config['datadir'], timerange=timerange,
# new_pairs_days=self.config['new_pairs_days'],
# erase=False, data_format=self.config.get('dataformat_ohlcv', 'json'),
# trading_mode=self.config.get('trading_mode', 'spot'),
# prepend=self.config.get('prepend_data', False)
# )
def download_all_data_for_training(self, timerange: TimeRange) -> None:
"""
Called only once upon start of bot to download the necessary data for

68
tests/freqai/conftest.py Normal file
View File

@ -0,0 +1,68 @@
from copy import deepcopy
from pathlib import Path
from unittest.mock import MagicMock
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.resolvers import StrategyResolver
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
# @pytest.fixture(scope="function")
def freqai_conf(default_conf):
freqaiconf = deepcopy(default_conf)
freqaiconf.update(
{
"datadir": Path(default_conf["datadir"]),
"strategy": "FreqaiExampleStrategy",
"strategy-path": "freqtrade/templates",
"freqaimodel": "LightGBMPredictionModel",
"freqaimodel_path": "freqai/prediction_models",
"timerange": "20180110-20180115",
"freqai": {
"startup_candles": 10000,
"purge_old_models": True,
"train_period_days": 15,
"backtest_period_days": 7,
"live_retrain_hours": 0,
"identifier": "uniqe-id7",
"live_trained_timestamp": 0,
"feature_parameters": {
"include_timeframes": ["5m"],
"include_corr_pairlist": ["ADA/BTC", "DASH/BTC"],
"label_period_candles": 20,
"include_shifted_candles": 2,
"DI_threshold": 0.9,
"weight_factor": 0.9,
"principal_component_analysis": False,
"use_SVM_to_remove_outliers": True,
"stratify_training_data": 0,
"indicator_max_period_candles": 10,
"indicator_periods_candles": [10],
},
"data_split_parameters": {"test_size": 0.33, "random_state": 1},
"model_training_parameters": {"n_estimators": 1000, "task_type": "CPU"},
},
"config_files": [Path('config_examples', 'config_freqai_futures.example.json')]
}
)
freqaiconf['exchange'].update({'pair_whitelist': ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC']})
return freqaiconf
def get_patched_data_kitchen(mocker, freqaiconf):
dd = mocker.patch('freqtrade.freqai.data_drawer', MagicMock())
dk = FreqaiDataKitchen(freqaiconf, dd)
return dk
def get_patched_strategy(mocker, freqaiconf):
strategy = StrategyResolver.load_strategy(freqaiconf)
strategy.bot_start()
return strategy
def get_patched_freqaimodel(mocker, freqaiconf):
freqaimodel = FreqaiModelResolver.load_freqaimodel(freqaiconf)
return freqaimodel

View File

@ -0,0 +1,95 @@
# from unittest.mock import MagicMock
# from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_edge
import copy
import pytest
from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider
# from freqtrade.freqai.data_drawer import FreqaiDataDrawer
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from tests.conftest import get_patched_exchange
from tests.freqai.conftest import freqai_conf, get_patched_data_kitchen, get_patched_strategy
@pytest.mark.parametrize(
"timerange, train_period_days, expected_result",
[
("20220101-20220201", 30, "20211202-20220201"),
("20220301-20220401", 15, "20220214-20220401"),
],
)
def test_create_fulltimerange(
timerange, train_period_days, expected_result, default_conf, mocker, caplog
):
dk = get_patched_data_kitchen(mocker, freqai_conf(copy.deepcopy(default_conf)))
assert dk.create_fulltimerange(timerange, train_period_days) == expected_result
def test_create_fulltimerange_incorrect_backtest_period(mocker, default_conf):
dk = get_patched_data_kitchen(mocker, freqai_conf(copy.deepcopy(default_conf)))
with pytest.raises(OperationalException, match=r"backtest_period_days must be an integer"):
dk.create_fulltimerange("20220101-20220201", 0.5)
with pytest.raises(OperationalException, match=r"backtest_period_days must be positive"):
dk.create_fulltimerange("20220101-20220201", -1)
def test_split_timerange(mocker, default_conf):
freqaiconf = freqai_conf(copy.deepcopy(default_conf))
freqaiconf.update({"timerange": "20220101-20220401"})
dk = get_patched_data_kitchen(mocker, freqaiconf)
tr_list, bt_list = dk.split_timerange("20220101-20220201", 30, 7)
assert len(tr_list) == len(bt_list) == 9
tr_list, bt_list = dk.split_timerange("20220101-20220201", 30, 0.5)
assert len(tr_list) == len(bt_list) == 120
tr_list, bt_list = dk.split_timerange("20220101-20220201", 10, 1)
assert len(tr_list) == len(bt_list) == 80
with pytest.raises(
OperationalException, match=r"train_period_days must be an integer greater than 0."
):
dk.split_timerange("20220101-20220201", -1, 0.5)
def test_update_historic_data(mocker, default_conf):
freqaiconf = freqai_conf(copy.deepcopy(default_conf))
strategy = get_patched_strategy(mocker, freqaiconf)
exchange = get_patched_exchange(mocker, freqaiconf)
strategy.dp = DataProvider(freqaiconf, exchange)
freqai = strategy.model.bridge
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
timerange = TimeRange.parse_timerange("20180110-20180114")
freqai.dk.load_all_pair_histories(timerange)
historic_candles = len(freqai.dd.historic_data["ADA/BTC"]["5m"])
dp_candles = len(strategy.dp.get_pair_dataframe("ADA/BTC", "5m"))
candle_difference = dp_candles - historic_candles
freqai.dk.update_historic_data(strategy)
updated_historic_candles = len(freqai.dd.historic_data["ADA/BTC"]["5m"])
assert updated_historic_candles - historic_candles == candle_difference
# def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05'):
# np.random.seed(42)
# tf_mins = timeframe_to_minutes(timeframe)
# base = np.random.normal(20, 2, size=size)
# date = pd.date_range(start, periods=size, freq=f'{tf_mins}min', tz='UTC')
# df = pd.DataFrame({
# 'date': date,
# 'open': base,
# 'high': base + np.random.normal(2, 1, size=size),
# 'low': base - np.random.normal(2, 1, size=size),
# 'close': base + np.random.normal(0, 1, size=size),
# 'volume': np.random.normal(200, size=size)
# }
# )
# df = df.dropna()
# return df