chore: make DOCS_LINK in constants.py, ensure datasieve is added to setup.py

This commit is contained in:
robcaulk 2023-06-16 13:06:21 +02:00
parent ad8a4897ce
commit 75ec19062c
5 changed files with 9 additions and 37 deletions

View File

@ -8,6 +8,7 @@ from typing import Any, Dict, List, Literal, Tuple
from freqtrade.enums import CandleType, PriceType, RPCMessageType
DOCS_LINK = "https://www.freqtrade.io/en/stable"
DEFAULT_CONFIG = 'config.json'
DEFAULT_EXCHANGE = 'bittrex'
PROCESS_THROTTLE_SECS = 5 # sec

View File

@ -119,7 +119,6 @@ class BaseReinforcementLearningModel(IFreqaiModel):
prices_train, prices_test = self.build_ohlc_price_dataframes(dk.data_dictionary, pair, dk)
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
(dd["train_features"],
dd["train_labels"],

View File

@ -12,7 +12,6 @@ import numpy.typing as npt
import pandas as pd
import psutil
from datasieve.pipeline import Pipeline
from datasieve.transforms import SKLearnWrapper
from pandas import DataFrame
from sklearn.model_selection import train_test_split
@ -966,35 +965,7 @@ class FreqaiDataKitchen:
"in a future version.\n"
"This version does not include any outlier configurations")
import datasieve.transforms as ds
from sklearn.preprocessing import MinMaxScaler
dd = data_dictionary
self.feature_pipeline = Pipeline([
('variance_threshold', ds.VarianceThreshold()),
('scaler', SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))
])
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = self.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = self.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
self.label_pipeline = Pipeline([
('scaler', SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))
])
dd["train_labels"], _, _ = self.label_pipeline.fit_transform(dd["train_labels"])
dd["test_labels"], _, _ = self.label_pipeline.transform(dd["test_labels"])
return dd
return data_dictionary
def denormalize_labels_from_metadata(self, df: DataFrame) -> DataFrame:
"""

View File

@ -18,7 +18,7 @@ from pandas import DataFrame
from sklearn.preprocessing import MinMaxScaler
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.constants import DOCS_LINK, Config
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
@ -974,20 +974,20 @@ class IFreqaiModel(ABC):
"""
throw deprecation warning if this function is called
"""
ft = "https://www.freqtrade.io/en/latest"
logger.warning(f"Your model {self.__class__.__name__} relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{ft}/strategy_migration/#freqai-new-data-pipeline")
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline")
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
return
def data_cleaning_predict(self, dk: FreqaiDataKitchen, pair: str):
"""
throw deprecation warning if this function is called
"""
ft = "https://www.freqtrade.io/en/latest"
logger.warning(f"Your model {self.__class__.__name__} relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{ft}/strategy_migration/#freqai-new-data-pipeline")
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline")
dk.label_pipeline = self.define_data_pipeline(threads=dk.thread_count)
return

View File

@ -16,7 +16,8 @@ freqai = [
'catboost; platform_machine != "aarch64"',
'lightgbm',
'xgboost',
'tensorboard'
'tensorboard',
'datasieve>=0.1.4'
]
freqai_rl = [