mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 02:12:01 +00:00
orderflow: use cache per pair
This commit is contained in:
parent
dad2cad525
commit
7de102320c
|
@ -6,6 +6,8 @@ import logging
|
|||
import time
|
||||
import typing
|
||||
from collections import OrderedDict
|
||||
from datetime import datetime
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
@ -17,7 +19,7 @@ from freqtrade.exceptions import DependencyException
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Global cache dictionary
|
||||
cached_grouped_trades: OrderedDict[pd.Timestamp, pd.DataFrame] = OrderedDict()
|
||||
cached_grouped_trades_per_pair: Dict[str, OrderedDict[Tuple[datetime, datetime], pd.DataFrame]] = {}
|
||||
|
||||
|
||||
def _init_dataframe_with_trades_columns(dataframe: pd.DataFrame):
|
||||
|
@ -61,7 +63,9 @@ def _calculate_ohlcv_candle_start_and_end(df: pd.DataFrame, timeframe: str):
|
|||
df.drop(columns=["datetime"], inplace=True)
|
||||
|
||||
|
||||
def populate_dataframe_with_trades(config, dataframe, trades):
|
||||
def populate_dataframe_with_trades(
|
||||
pair: str, config, dataframe: pd.DataFrame, trades: pd.DataFrame
|
||||
):
|
||||
"""
|
||||
Populates a dataframe with trades
|
||||
:param dataframe: Dataframe to populate
|
||||
|
@ -76,6 +80,9 @@ def populate_dataframe_with_trades(config, dataframe, trades):
|
|||
_init_dataframe_with_trades_columns(dataframe)
|
||||
|
||||
try:
|
||||
cached_grouped_trades: OrderedDict[Tuple[datetime, datetime], pd.DataFrame] = (
|
||||
cached_grouped_trades_per_pair.get(pair, OrderedDict())
|
||||
)
|
||||
start_time = time.time()
|
||||
# calculate ohlcv candle start and end
|
||||
_calculate_ohlcv_candle_start_and_end(trades, timeframe)
|
||||
|
@ -114,7 +121,9 @@ def populate_dataframe_with_trades(config, dataframe, trades):
|
|||
trades_series.loc[indices] = [trades_grouped_df]
|
||||
# Use caching mechanism
|
||||
if (candle_start, candle_next) in cached_grouped_trades:
|
||||
cache_entry = cached_grouped_trades[(typing.cast(datetime, candle_start), candle_next)]
|
||||
cache_entry = cached_grouped_trades[
|
||||
(typing.cast(datetime, candle_start), candle_next)
|
||||
]
|
||||
# dataframe.loc[is_between] = cache_entry # doesn't take, so we need workaround:
|
||||
# Create a dictionary of the column values to be assigned
|
||||
update_dict = {c: cache_entry[c].iat[0] for c in cache_entry.columns}
|
||||
|
@ -170,9 +179,9 @@ def populate_dataframe_with_trades(config, dataframe, trades):
|
|||
dataframe.loc[indices, "total_trades"] = len(trades_grouped_df)
|
||||
|
||||
# Cache the result
|
||||
cached_grouped_trades[(typing.cast(datetime, candle_start), candle_next)] = dataframe.loc[
|
||||
is_between
|
||||
].copy()
|
||||
cached_grouped_trades[(typing.cast(datetime, candle_start), candle_next)] = (
|
||||
dataframe.loc[is_between].copy()
|
||||
)
|
||||
|
||||
# Maintain cache size
|
||||
if len(cached_grouped_trades) > cache_size:
|
||||
|
@ -187,6 +196,10 @@ def populate_dataframe_with_trades(config, dataframe, trades):
|
|||
dataframe["imbalances"] = imbalances_series
|
||||
dataframe["stacked_imbalances_bid"] = stacked_imbalances_bid_series
|
||||
dataframe["stacked_imbalances_ask"] = stacked_imbalances_ask_series
|
||||
# dereference old cache
|
||||
if pair in cached_grouped_trades_per_pair:
|
||||
del cached_grouped_trades_per_pair[pair]
|
||||
cached_grouped_trades_per_pair[pair] = cached_grouped_trades
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("Error populating dataframe with trades")
|
||||
|
@ -195,7 +208,9 @@ def populate_dataframe_with_trades(config, dataframe, trades):
|
|||
return dataframe
|
||||
|
||||
|
||||
def trades_to_volumeprofile_with_total_delta_bid_ask(trades: pd.DataFrame, scale: float) -> pd.DataFrame:
|
||||
def trades_to_volumeprofile_with_total_delta_bid_ask(
|
||||
trades: pd.DataFrame, scale: float
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
:param trades: dataframe
|
||||
:param scale: scale aka bin size e.g. 0.5
|
||||
|
|
|
@ -1601,7 +1601,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||
config = self.config
|
||||
config["timeframe"] = self.timeframe
|
||||
# TODO: slice trades to size of dataframe for faster backtesting
|
||||
dataframe = populate_dataframe_with_trades(config, dataframe, trades)
|
||||
dataframe = populate_dataframe_with_trades(metadata["pair"], config, dataframe, trades)
|
||||
|
||||
logger.debug("Populated dataframe with trades.")
|
||||
|
||||
|
|
|
@ -54,7 +54,7 @@ def reset_cache(request):
|
|||
import freqtrade.data.converter.orderflow as orderflow
|
||||
|
||||
global orderflow # noqa F811
|
||||
orderflow.cached_grouped_trades = OrderedDict()
|
||||
orderflow.cached_grouped_trades_per_pair = {}
|
||||
yield
|
||||
|
||||
|
||||
|
@ -110,7 +110,7 @@ def test_public_trades_mock_populate_dataframe_with_trades__check_orderflow(
|
|||
},
|
||||
}
|
||||
# Apply the function to populate the data frame with order flow data
|
||||
df = populate_dataframe_with_trades(config, dataframe, trades)
|
||||
df = populate_dataframe_with_trades("BTC/UDST", config, dataframe, trades)
|
||||
# Extract results from the first row of the DataFrame
|
||||
results = df.iloc[0]
|
||||
t = results["trades"]
|
||||
|
@ -223,7 +223,7 @@ def test_public_trades_trades_mock_populate_dataframe_with_trades__check_trades(
|
|||
}
|
||||
|
||||
# Populate the DataFrame with trades and order flow data
|
||||
df = populate_dataframe_with_trades(config, dataframe, trades)
|
||||
df = populate_dataframe_with_trades("BTC/UDST", config, dataframe, trades)
|
||||
|
||||
# --- DataFrame and Trade Data Validation ---
|
||||
|
||||
|
@ -389,7 +389,9 @@ def test_public_trades_config_max_trades(
|
|||
},
|
||||
}
|
||||
|
||||
df = populate_dataframe_with_trades(default_conf | orderflow_config, dataframe, trades)
|
||||
df = populate_dataframe_with_trades(
|
||||
"BTC/UDST", default_conf | orderflow_config, dataframe, trades
|
||||
)
|
||||
assert df.delta.count() == 1
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user