mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 12:13:57 +00:00
add CNN prediction model
This commit is contained in:
commit
85df7faa98
|
@ -3,10 +3,10 @@ from time import time
|
|||
from typing import Any
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
import numpy as np
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -17,6 +17,13 @@ class BaseTensorFlowModel(IFreqaiModel):
|
|||
User *must* inherit from this class and set fit() and predict().
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(config=kwargs['config'])
|
||||
self.keras = True
|
||||
if self.ft_params.get("DI_threshold", 0):
|
||||
self.ft_params["DI_threshold"] = 0
|
||||
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
||||
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
|
@ -68,3 +75,76 @@ class BaseTensorFlowModel(IFreqaiModel):
|
|||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
|
||||
|
||||
class WindowGenerator:
|
||||
def __init__(
|
||||
self,
|
||||
input_width,
|
||||
label_width,
|
||||
shift,
|
||||
train_df=None,
|
||||
val_df=None,
|
||||
test_df=None,
|
||||
train_labels=None,
|
||||
val_labels=None,
|
||||
test_labels=None,
|
||||
batch_size=None,
|
||||
):
|
||||
# Store the raw data.
|
||||
self.train_df = train_df
|
||||
self.val_df = val_df
|
||||
self.test_df = test_df
|
||||
self.train_labels = train_labels
|
||||
self.val_labels = val_labels
|
||||
self.test_labels = test_labels
|
||||
self.batch_size = batch_size
|
||||
self.input_width = input_width
|
||||
self.label_width = label_width
|
||||
self.shift = shift
|
||||
self.total_window_size = input_width + shift
|
||||
self.input_slice = slice(0, input_width)
|
||||
self.input_indices = np.arange(self.total_window_size)[self.input_slice]
|
||||
|
||||
def make_dataset(self, data, labels=None):
|
||||
data = np.array(data, dtype=np.float32)
|
||||
if labels is not None:
|
||||
labels = np.array(labels, dtype=np.float32)
|
||||
ds = tf.keras.preprocessing.timeseries_dataset_from_array(
|
||||
data=data,
|
||||
targets=labels,
|
||||
sequence_length=self.total_window_size,
|
||||
sequence_stride=1,
|
||||
sampling_rate=1,
|
||||
shuffle=False,
|
||||
batch_size=self.batch_size,
|
||||
)
|
||||
|
||||
return ds
|
||||
|
||||
@property
|
||||
def train(self):
|
||||
return self.make_dataset(self.train_df, self.train_labels)
|
||||
|
||||
@property
|
||||
def val(self):
|
||||
return self.make_dataset(self.val_df, self.val_labels)
|
||||
|
||||
@property
|
||||
def test(self):
|
||||
return self.make_dataset(self.test_df, self.test_labels)
|
||||
|
||||
@property
|
||||
def inference(self):
|
||||
return self.make_dataset(self.test_df)
|
||||
|
||||
@property
|
||||
def example(self):
|
||||
"""Get and cache an example batch of `inputs, labels` for plotting."""
|
||||
result = getattr(self, "_example", None)
|
||||
if result is None:
|
||||
# No example batch was found, so get one from the `.train` dataset
|
||||
result = next(iter(self.train))
|
||||
# And cache it for next time
|
||||
self._example = result
|
||||
return result
|
||||
|
|
|
@ -77,9 +77,10 @@ class FreqaiDataKitchen:
|
|||
self.backtest_predictions_folder: str = "backtesting_predictions"
|
||||
self.live = live
|
||||
self.pair = pair
|
||||
self.model_save_type = self.freqai_config.get('model_save_type', 'joblib')
|
||||
|
||||
self.svm_model: linear_model.SGDOneClassSVM = None
|
||||
self.keras: bool = self.freqai_config.get("keras", False)
|
||||
# self.model_save_type: bool = self.freqai_config.get("keras", False)
|
||||
self.set_all_pairs()
|
||||
if not self.live:
|
||||
if not self.config["timerange"]:
|
||||
|
@ -569,7 +570,7 @@ class FreqaiDataKitchen:
|
|||
predict: bool = If true, inference an existing SVM model, else construct one
|
||||
"""
|
||||
|
||||
if self.keras:
|
||||
if self.model_save_type == 'keras':
|
||||
logger.warning(
|
||||
"SVM outlier removal not currently supported for Keras based models. "
|
||||
"Skipping user requested function."
|
||||
|
|
|
@ -73,10 +73,10 @@ class IFreqaiModel(ABC):
|
|||
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
||||
self.scanning = False
|
||||
self.ft_params = self.freqai_info["feature_parameters"]
|
||||
self.keras: bool = self.freqai_info.get("keras", False)
|
||||
if self.keras and self.ft_params.get("DI_threshold", 0):
|
||||
self.ft_params["DI_threshold"] = 0
|
||||
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
||||
# self.keras: bool = self.freqai_info.get("keras", False)
|
||||
# if self.keras and self.ft_params.get("DI_threshold", 0):
|
||||
# self.ft_params["DI_threshold"] = 0
|
||||
# logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
||||
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
|
||||
if self.ft_params.get("inlier_metric_window", 0):
|
||||
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
|
||||
|
@ -645,7 +645,8 @@ class IFreqaiModel(ABC):
|
|||
|
||||
# # for keras type models, the conv_window needs to be prepended so
|
||||
# # viewing is correct in frequi
|
||||
if self.freqai_info.get('keras', False) or self.ft_params.get('inlier_metric_window', 0):
|
||||
if (not self.freqai_info.get('model_save_type', 'joblib') or
|
||||
self.ft_params.get('inlier_metric_window', 0)):
|
||||
n_lost_points = self.freqai_info.get('conv_width', 2)
|
||||
zeros_df = DataFrame(np.zeros((n_lost_points, len(hist_preds_df.columns))),
|
||||
columns=hist_preds_df.columns)
|
||||
|
|
144
freqtrade/freqai/prediction_models/CNNPredictionModel.py
Normal file
144
freqtrade/freqai/prediction_models/CNNPredictionModel.py
Normal file
|
@ -0,0 +1,144 @@
|
|||
import logging
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
from pandas import DataFrame
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
import tensorflow as tf
|
||||
from freqtrade.freqai.base_models.BaseTensorFlowModel import BaseTensorFlowModel, WindowGenerator
|
||||
from tensorflow.keras.layers import Input, Conv1D, Dense
|
||||
from tensorflow.keras.models import Model
|
||||
import numpy as np
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# tf.config.run_functions_eagerly(True)
|
||||
# tf.data.experimental.enable_debug_mode()
|
||||
|
||||
MAX_EPOCHS = 10
|
||||
|
||||
|
||||
class CNNPredictionModel(BaseTensorFlowModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), fit().
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
train_df = data_dictionary["train_features"]
|
||||
train_labels = data_dictionary["train_labels"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
test_labels = data_dictionary["test_labels"]
|
||||
n_labels = len(train_labels.columns)
|
||||
if n_labels > 1:
|
||||
raise OperationalException(
|
||||
"Neural Net not yet configured for multi-targets. Please "
|
||||
" reduce number of targets to 1 in strategy."
|
||||
)
|
||||
|
||||
n_features = len(data_dictionary["train_features"].columns)
|
||||
BATCH_SIZE = self.freqai_info.get("batch_size", 64)
|
||||
input_dims = [BATCH_SIZE, self.CONV_WIDTH, n_features]
|
||||
|
||||
w1 = WindowGenerator(
|
||||
input_width=self.CONV_WIDTH,
|
||||
label_width=1,
|
||||
shift=1,
|
||||
train_df=train_df,
|
||||
val_df=test_df,
|
||||
train_labels=train_labels,
|
||||
val_labels=test_labels,
|
||||
batch_size=BATCH_SIZE,
|
||||
)
|
||||
|
||||
model = self.create_model(input_dims, n_labels)
|
||||
|
||||
steps_per_epoch = np.ceil(len(test_df) / BATCH_SIZE)
|
||||
lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay(
|
||||
0.001, decay_steps=steps_per_epoch * 1000, decay_rate=1, staircase=False
|
||||
)
|
||||
|
||||
early_stopping = tf.keras.callbacks.EarlyStopping(
|
||||
monitor="loss", patience=3, mode="min", min_delta=0.0001
|
||||
)
|
||||
|
||||
model.compile(
|
||||
loss=tf.losses.MeanSquaredError(),
|
||||
optimizer=tf.optimizers.Adam(lr_schedule),
|
||||
metrics=[tf.metrics.MeanAbsoluteError()],
|
||||
)
|
||||
|
||||
model.fit(
|
||||
w1.train,
|
||||
epochs=MAX_EPOCHS,
|
||||
shuffle=False,
|
||||
validation_data=w1.val,
|
||||
callbacks=[early_stopping],
|
||||
verbose=1,
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
def predict(
|
||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first=True
|
||||
) -> Tuple[DataFrame, DataFrame]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:predictions: np.array of predictions
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = dk.filter_features(
|
||||
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_predict(dk, filtered_dataframe)
|
||||
|
||||
if first:
|
||||
full_df = dk.data_dictionary["prediction_features"]
|
||||
|
||||
w1 = WindowGenerator(
|
||||
input_width=self.CONV_WIDTH,
|
||||
label_width=1,
|
||||
shift=1,
|
||||
test_df=full_df,
|
||||
batch_size=len(full_df),
|
||||
)
|
||||
|
||||
predictions = self.model.predict(w1.inference)
|
||||
len_diff = len(dk.do_predict) - len(predictions)
|
||||
if len_diff > 0:
|
||||
dk.do_predict = dk.do_predict[len_diff:]
|
||||
|
||||
else:
|
||||
data = dk.data_dictionary["prediction_features"]
|
||||
data = tf.expand_dims(data, axis=0)
|
||||
predictions = self.model(data, training=False)
|
||||
|
||||
predictions = predictions[:, 0, 0]
|
||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||||
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
|
||||
return (pred_df, np.ones(len(pred_df)))
|
||||
|
||||
def create_model(self, input_dims, n_labels) -> Any:
|
||||
|
||||
input_layer = Input(shape=(input_dims[1], input_dims[2]))
|
||||
Layer_1 = Conv1D(filters=32, kernel_size=(self.CONV_WIDTH,), activation="relu")(input_layer)
|
||||
Layer_3 = Dense(units=32, activation="relu")(Layer_1)
|
||||
output_layer = Dense(units=n_labels)(Layer_3)
|
||||
return Model(inputs=input_layer, outputs=output_layer)
|
Loading…
Reference in New Issue
Block a user