mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
create a prediction_models folder where basic prediction models can live (similar to optimize/hyperopt-loss. Update resolver/docs/and gitignore to accommodate change
This commit is contained in:
parent
80dcd88abf
commit
8664e8f9a3
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -8,6 +8,8 @@ user_data/*
|
||||||
!user_data/strategy/sample_strategy.py
|
!user_data/strategy/sample_strategy.py
|
||||||
!user_data/notebooks
|
!user_data/notebooks
|
||||||
!user_data/models
|
!user_data/models
|
||||||
|
!user_data/freqaimodels
|
||||||
|
user_data/freqaimodels/*
|
||||||
user_data/models/*
|
user_data/models/*
|
||||||
user_data/notebooks/*
|
user_data/notebooks/*
|
||||||
freqtrade-plot.html
|
freqtrade-plot.html
|
||||||
|
|
|
@ -49,15 +49,16 @@ Use `pip` to install the prerequisities with:
|
||||||
|
|
||||||
## Running from the example files
|
## Running from the example files
|
||||||
|
|
||||||
An example strategy, example prediction model, and example config can all be found in
|
An example strategy, an example prediction model, and example config can all be found in
|
||||||
`freqtrade/templates/ExampleFreqaiStrategy.py`, `freqtrade/templates/ExamplePredictionModel.py`,
|
`freqtrade/templates/ExampleFreqaiStrategy.py`,
|
||||||
|
`freqtrade/freqai/prediction_models/CatboostPredictionModel.py`,
|
||||||
`config_examples/config_freqai.example.json`, respectively. Assuming the user has downloaded
|
`config_examples/config_freqai.example.json`, respectively. Assuming the user has downloaded
|
||||||
the necessary data, Freqai can be executed from these templates with:
|
the necessary data, Freqai can be executed from these templates with:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
freqtrade backtesting --config config_examples/config_freqai.example.json --strategy
|
freqtrade backtesting --config config_examples/config_freqai.example.json --strategy
|
||||||
FreqaiExampleStrategy --freqaimodel ExamplePredictionModel
|
FreqaiExampleStrategy --freqaimodel CatboostPredictionModel --strategy-path freqtrade/templates
|
||||||
--freqaimodel-path freqtrade/templates --strategy-path freqtrade/templates --timerange 20220101-220201
|
--timerange 20220101-220201
|
||||||
```
|
```
|
||||||
|
|
||||||
## Configuring the bot
|
## Configuring the bot
|
||||||
|
@ -185,7 +186,7 @@ the feature set with a proper naming convention for the IFreqaiModel to use late
|
||||||
|
|
||||||
### Building an IFreqaiModel
|
### Building an IFreqaiModel
|
||||||
|
|
||||||
Freqai has a base example model in `templates/ExamplePredictionModel.py`, but users can customize and create
|
Freqai has an example prediction model based on the popular `Catboost` regression (`freqai/prediction_models/CatboostPredictionModel.py`). However, users can customize and create
|
||||||
their own prediction models using the `IFreqaiModel` class. Users are encouraged to inherit `train()`, `predict()`,
|
their own prediction models using the `IFreqaiModel` class. Users are encouraged to inherit `train()`, `predict()`,
|
||||||
and `make_labels()` to let them customize various aspects of their training procedures.
|
and `make_labels()` to let them customize various aspects of their training procedures.
|
||||||
|
|
||||||
|
|
|
@ -105,6 +105,11 @@ class IFreqaiModel(ABC):
|
||||||
self.dh.full_target_mean, self.dh.full_target_std)
|
self.dh.full_target_mean, self.dh.full_target_std)
|
||||||
|
|
||||||
def start_live(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> None:
|
def start_live(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> None:
|
||||||
|
"""
|
||||||
|
The main broad execution for dry/live. This function will check if a retraining should be
|
||||||
|
performed, and if so, retrain and reset the model.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
self.dh.set_paths()
|
self.dh.set_paths()
|
||||||
|
|
||||||
|
@ -119,7 +124,6 @@ class IFreqaiModel(ABC):
|
||||||
|
|
||||||
if retrain or not file_exists:
|
if retrain or not file_exists:
|
||||||
self.dh.download_new_data_for_retraining(new_trained_timerange, metadata)
|
self.dh.download_new_data_for_retraining(new_trained_timerange, metadata)
|
||||||
# dataframe = download-data
|
|
||||||
corr_dataframes, base_dataframes = self.dh.load_pairs_histories(new_trained_timerange,
|
corr_dataframes, base_dataframes = self.dh.load_pairs_histories(new_trained_timerange,
|
||||||
metadata)
|
metadata)
|
||||||
|
|
||||||
|
@ -131,12 +135,9 @@ class IFreqaiModel(ABC):
|
||||||
self.model = self.train(unfiltered_dataframe, metadata)
|
self.model = self.train(unfiltered_dataframe, metadata)
|
||||||
self.dh.save_data(self.model)
|
self.dh.save_data(self.model)
|
||||||
|
|
||||||
self.freqai_info
|
|
||||||
|
|
||||||
self.model = self.dh.load_data()
|
self.model = self.dh.load_data()
|
||||||
preds, do_preds = self.predict(dataframe, metadata)
|
preds, do_preds = self.predict(dataframe, metadata)
|
||||||
self.dh.append_predictions(preds, do_preds, len(dataframe))
|
self.dh.append_predictions(preds, do_preds, len(dataframe))
|
||||||
# dataframe should have len 1 here
|
|
||||||
|
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
159
freqtrade/freqai/prediction_models/CatboostPredictionModel.py
Normal file
159
freqtrade/freqai/prediction_models/CatboostPredictionModel.py
Normal file
|
@ -0,0 +1,159 @@
|
||||||
|
import logging
|
||||||
|
from typing import Any, Dict, Tuple
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
from catboost import CatBoostRegressor, Pool
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class CatboostPredictionModel(IFreqaiModel):
|
||||||
|
"""
|
||||||
|
User created prediction model. The class needs to override three necessary
|
||||||
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||||
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def make_labels(self, dataframe: DataFrame) -> DataFrame:
|
||||||
|
"""
|
||||||
|
User defines the labels here (target values).
|
||||||
|
:params:
|
||||||
|
:dataframe: the full dataframe for the present training period
|
||||||
|
"""
|
||||||
|
|
||||||
|
dataframe["s"] = (
|
||||||
|
dataframe["close"]
|
||||||
|
.shift(-self.feature_parameters["period"])
|
||||||
|
.rolling(self.feature_parameters["period"])
|
||||||
|
.max()
|
||||||
|
/ dataframe["close"]
|
||||||
|
- 1
|
||||||
|
)
|
||||||
|
self.dh.data["s_mean"] = dataframe["s"].mean()
|
||||||
|
self.dh.data["s_std"] = dataframe["s"].std()
|
||||||
|
|
||||||
|
# logger.info("label mean", self.dh.data["s_mean"], "label std", self.dh.data["s_std"])
|
||||||
|
|
||||||
|
return dataframe["s"]
|
||||||
|
|
||||||
|
def train(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Tuple[DataFrame, DataFrame]:
|
||||||
|
"""
|
||||||
|
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
|
||||||
|
for storing, saving, loading, and analyzing the data.
|
||||||
|
:params:
|
||||||
|
:unfiltered_dataframe: Full dataframe for the current training period
|
||||||
|
:metadata: pair metadata from strategy.
|
||||||
|
:returns:
|
||||||
|
:model: Trained model which can be used to inference (self.predict)
|
||||||
|
"""
|
||||||
|
logger.info("--------------------Starting training--------------------")
|
||||||
|
|
||||||
|
# create the full feature list based on user config info
|
||||||
|
self.dh.training_features_list = self.dh.build_feature_list(self.config, metadata)
|
||||||
|
unfiltered_labels = self.make_labels(unfiltered_dataframe)
|
||||||
|
|
||||||
|
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||||
|
features_filtered, labels_filtered = self.dh.filter_features(
|
||||||
|
unfiltered_dataframe,
|
||||||
|
self.dh.training_features_list,
|
||||||
|
unfiltered_labels,
|
||||||
|
training_filter=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# split data into train/test data.
|
||||||
|
data_dictionary = self.dh.make_train_test_datasets(features_filtered, labels_filtered)
|
||||||
|
# standardize all data based on train_dataset only
|
||||||
|
data_dictionary = self.dh.standardize_data(data_dictionary)
|
||||||
|
|
||||||
|
# optional additional data cleaning
|
||||||
|
if self.feature_parameters["principal_component_analysis"]:
|
||||||
|
self.dh.principal_component_analysis()
|
||||||
|
if self.feature_parameters["remove_outliers"]:
|
||||||
|
self.dh.remove_outliers(predict=False)
|
||||||
|
if self.feature_parameters["DI_threshold"]:
|
||||||
|
self.dh.data["avg_mean_dist"] = self.dh.compute_distances()
|
||||||
|
|
||||||
|
logger.info("length of train data %s", len(data_dictionary["train_features"]))
|
||||||
|
|
||||||
|
model = self.fit(data_dictionary)
|
||||||
|
|
||||||
|
logger.info(f'--------------------done training {metadata["pair"]}--------------------')
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
def fit(self, data_dictionary: Dict) -> Any:
|
||||||
|
"""
|
||||||
|
Most regressors use the same function names and arguments e.g. user
|
||||||
|
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
||||||
|
management will be properly handled by Freqai.
|
||||||
|
:params:
|
||||||
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
|
all the training and test data/labels.
|
||||||
|
"""
|
||||||
|
|
||||||
|
train_data = Pool(
|
||||||
|
data=data_dictionary["train_features"],
|
||||||
|
label=data_dictionary["train_labels"],
|
||||||
|
weight=data_dictionary["train_weights"],
|
||||||
|
)
|
||||||
|
|
||||||
|
test_data = Pool(
|
||||||
|
data=data_dictionary["test_features"],
|
||||||
|
label=data_dictionary["test_labels"],
|
||||||
|
weight=data_dictionary["test_weights"],
|
||||||
|
)
|
||||||
|
|
||||||
|
model = CatBoostRegressor(
|
||||||
|
verbose=100, early_stopping_rounds=400, **self.model_training_parameters
|
||||||
|
)
|
||||||
|
model.fit(X=train_data, eval_set=test_data)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
def predict(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Tuple[DataFrame,
|
||||||
|
DataFrame]:
|
||||||
|
"""
|
||||||
|
Filter the prediction features data and predict with it.
|
||||||
|
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||||
|
:return:
|
||||||
|
:predictions: np.array of predictions
|
||||||
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||||
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||||
|
"""
|
||||||
|
|
||||||
|
# logger.info("--------------------Starting prediction--------------------")
|
||||||
|
|
||||||
|
original_feature_list = self.dh.build_feature_list(self.config, metadata)
|
||||||
|
filtered_dataframe, _ = self.dh.filter_features(
|
||||||
|
unfiltered_dataframe, original_feature_list, training_filter=False
|
||||||
|
)
|
||||||
|
filtered_dataframe = self.dh.standardize_data_from_metadata(filtered_dataframe)
|
||||||
|
self.dh.data_dictionary["prediction_features"] = filtered_dataframe
|
||||||
|
|
||||||
|
# optional additional data cleaning
|
||||||
|
if self.feature_parameters["principal_component_analysis"]:
|
||||||
|
pca_components = self.dh.pca.transform(filtered_dataframe)
|
||||||
|
self.dh.data_dictionary["prediction_features"] = pd.DataFrame(
|
||||||
|
data=pca_components,
|
||||||
|
columns=["PC" + str(i) for i in range(0, self.dh.data["n_kept_components"])],
|
||||||
|
index=filtered_dataframe.index,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.feature_parameters["remove_outliers"]:
|
||||||
|
self.dh.remove_outliers(predict=True) # creates dropped index
|
||||||
|
|
||||||
|
if self.feature_parameters["DI_threshold"]:
|
||||||
|
self.dh.check_if_pred_in_training_spaces() # sets do_predict
|
||||||
|
|
||||||
|
predictions = self.model.predict(self.dh.data_dictionary["prediction_features"])
|
||||||
|
|
||||||
|
# compute the non-standardized predictions
|
||||||
|
self.dh.predictions = predictions * self.dh.data["labels_std"] + self.dh.data["labels_mean"]
|
||||||
|
|
||||||
|
# logger.info("--------------------Finished prediction--------------------")
|
||||||
|
|
||||||
|
return (self.dh.predictions, self.dh.do_predict)
|
|
@ -24,7 +24,8 @@ class FreqaiModelResolver(IResolver):
|
||||||
object_type = IFreqaiModel
|
object_type = IFreqaiModel
|
||||||
object_type_str = "FreqaiModel"
|
object_type_str = "FreqaiModel"
|
||||||
user_subdir = USERPATH_FREQAIMODELS
|
user_subdir = USERPATH_FREQAIMODELS
|
||||||
initial_search_path = Path(__file__).parent.parent.joinpath("optimize").resolve()
|
initial_search_path = Path(__file__).parent.parent.joinpath(
|
||||||
|
"freqai/prediction_models").resolve()
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load_freqaimodel(config: Dict) -> IFreqaiModel:
|
def load_freqaimodel(config: Dict) -> IFreqaiModel:
|
||||||
|
|
0
user_data/freqaimodels/.gitkeep
Normal file
0
user_data/freqaimodels/.gitkeep
Normal file
Loading…
Reference in New Issue
Block a user