mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 02:12:01 +00:00
parent
b740ed8064
commit
8a56af9192
|
@ -9,23 +9,11 @@ from pandas import DataFrame
|
|||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
# This is assumed to be expected avg profit * expected trade count.
|
||||
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||
# expected max profit = 3.85
|
||||
#
|
||||
# Note, this is ratio. 3.85 stated above means 385Σ%, 3.0 means 300Σ%.
|
||||
#
|
||||
# In this implementation it's only used in calculation of the resulting value
|
||||
# of the objective function as a normalization coefficient and does not
|
||||
# represent any limit for profits as in the Freqtrade legacy default loss function.
|
||||
EXPECTED_MAX_PROFIT = 3.0
|
||||
|
||||
|
||||
class OnlyProfitHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation takes only profit into account.
|
||||
This implementation takes only absolute profit into account, not looking at any other indicator.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
|
@ -34,5 +22,5 @@ class OnlyProfitHyperOptLoss(IHyperOptLoss):
|
|||
"""
|
||||
Objective function, returns smaller number for better results.
|
||||
"""
|
||||
total_profit = results['profit_ratio'].sum()
|
||||
return 1 - total_profit / EXPECTED_MAX_PROFIT
|
||||
total_profit = results['profit_abs'].sum()
|
||||
return -1 * total_profit
|
||||
|
|
|
@ -149,9 +149,9 @@ def test_sortino_loss_daily_prefers_higher_profits(default_conf, hyperopt_result
|
|||
|
||||
def test_onlyprofit_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_ratio'] = hyperopt_results['profit_ratio'] * 2
|
||||
results_over['profit_abs'] = hyperopt_results['profit_abs'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_ratio'] = hyperopt_results['profit_ratio'] / 2
|
||||
results_under['profit_abs'] = hyperopt_results['profit_abs'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'OnlyProfitHyperOptLoss'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
|
|
Loading…
Reference in New Issue
Block a user