Add template for new-hyperopt command

This commit is contained in:
Matthias 2019-11-02 10:42:17 +01:00
parent e492d47621
commit 8c2ff2f46e
3 changed files with 189 additions and 3 deletions

View File

@ -41,6 +41,8 @@ ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy"]
ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
"timeframes", "erase"]
@ -54,7 +56,7 @@ ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
NO_CONF_REQURIED = ["download-data", "list-timeframes", "list-markets", "list-pairs",
"plot-dataframe", "plot-profit"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges","new-hyperopt", "new-strategy"]
class Arguments:
@ -119,7 +121,7 @@ class Arguments:
from freqtrade.optimize import start_backtesting, start_hyperopt, start_edge
from freqtrade.utils import (start_create_userdir, start_download_data,
start_list_exchanges, start_list_markets,
start_new_strategy,
start_new_hyperopt, start_new_strategy,
start_list_timeframes, start_trading)
from freqtrade.plot.plot_utils import start_plot_dataframe, start_plot_profit
@ -167,6 +169,12 @@ class Arguments:
build_strategy_cmd.set_defaults(func=start_new_strategy)
self._build_args(optionlist=ARGS_BUILD_STRATEGY, parser=build_strategy_cmd)
# add new-hyperopt subcommand
build_hyperopt_cmd = subparsers.add_parser('new-hyperopt',
help="Create new hyperopt")
build_hyperopt_cmd.set_defaults(func=start_new_hyperopt)
self._build_args(optionlist=ARGS_BUILD_HYPEROPT, parser=build_hyperopt_cmd)
# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',

View File

@ -0,0 +1,154 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import talib.abstract as ta
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.optimize.hyperopt_interface import IHyperOpt
class {{ hyperopt }}(IHyperOpt):
"""
This is a Hyperopt template to get you started.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
You should:
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The roi_space, generate_roi_table, stoploss_space methods are no longer required to be
copied in every custom hyperopt. However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
Sample implementation of these methods can be found in
https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py
"""
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
conditions.append(dataframe['adx'] < params['sell-adx-value'])
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-bb_upper':
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['sar'], dataframe['close']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')
]

View File

@ -14,7 +14,7 @@ from freqtrade.configuration import (Configuration, TimeRange,
remove_credentials)
from freqtrade.configuration.directory_operations import (copy_sample_files,
create_userdata_dir)
from freqtrade.constants import DEFAULT_STRATEGY
from freqtrade.constants import DEFAULT_HYPEROPT, DEFAULT_STRATEGY
from freqtrade.data.history import (convert_trades_to_ohlcv,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data)
@ -115,6 +115,30 @@ def start_new_strategy(args: Dict[str, Any]) -> None:
sys.exit(1)
def start_new_hyperopt(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "hyperopt" in args and args["hyperopt"]:
if args["hyperopt"] == DEFAULT_HYPEROPT:
raise OperationalException("DefaultHyperOpt is not allowed as name.")
new_path = config['user_data_dir'] / "hyperopts" / (args["hyperopt"] + ".py")
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Strategy Name.")
strategy_text = render_template(template='base_hyperopt.py.j2',
arguments={"hyperopt": args["hyperopt"]})
logger.info(f"Writing hyperopt to `{new_path}`.")
new_path.write_text(strategy_text)
else:
logger.warning("`new-hyperopt` requires --hyperopt to be set.")
sys.exit(1)
def start_download_data(args: Dict[str, Any]) -> None:
"""
Download data (former download_backtest_data.py script)