ruff format: Update test strategies

This commit is contained in:
Matthias 2024-05-12 15:41:07 +02:00
parent 099b1fc8c4
commit 8c7d80b78e
23 changed files with 420 additions and 462 deletions

View File

@ -12,7 +12,6 @@ from freqtrade.strategy.interface import IStrategy
class TestStrategyNoImplements(IStrategy):
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return super().populate_indicators(dataframe, metadata)
@ -26,9 +25,15 @@ class TestStrategyImplementCustomSell(TestStrategyNoImplementSell):
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return super().populate_exit_trend(dataframe, metadata)
def custom_sell(self, pair: str, trade, current_time: datetime,
current_rate: float, current_profit: float,
**kwargs):
def custom_sell(
self,
pair: str,
trade,
current_time: datetime,
current_rate: float,
current_profit: float,
**kwargs,
):
return False
@ -36,8 +41,9 @@ class TestStrategyImplementBuyTimeout(TestStrategyNoImplementSell):
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return super().populate_exit_trend(dataframe, metadata)
def check_buy_timeout(self, pair: str, trade, order: Order,
current_time: datetime, **kwargs) -> bool:
def check_buy_timeout(
self, pair: str, trade, order: Order, current_time: datetime, **kwargs
) -> bool:
return False
@ -45,6 +51,7 @@ class TestStrategyImplementSellTimeout(TestStrategyNoImplementSell):
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return super().populate_exit_trend(dataframe, metadata)
def check_sell_timeout(self, pair: str, trade, order: Order,
current_time: datetime, **kwargs) -> bool:
def check_sell_timeout(
self, pair: str, trade, order: Order, current_time: datetime, **kwargs
) -> bool:
return False

View File

@ -6,25 +6,16 @@ from freqtrade.strategy import IStrategy
# Dummy strategy - no longer loads but raises an exception.
class TestStrategyLegacyV1(IStrategy):
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
minimal_roi = {"40": 0.0, "30": 0.01, "20": 0.02, "0": 0.04}
stoploss = -0.10
timeframe = '5m'
timeframe = "5m"
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
return dataframe

View File

@ -25,22 +25,20 @@ class freqai_rl_test_strat(IStrategy):
startup_candle_count: int = 300
can_short = False
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
metadata: Dict, **kwargs):
def feature_engineering_expand_all(
self, dataframe: DataFrame, period: int, metadata: Dict, **kwargs
):
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
return dataframe
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
@ -52,19 +50,16 @@ class freqai_rl_test_strat(IStrategy):
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["&-action"] = 0
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe = self.freqai.start(dataframe, metadata, self)
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df["do_predict"] == 1, df["&-action"] == 1]
if enter_long_conditions:

View File

@ -57,9 +57,9 @@ class freqai_test_classifier(IStrategy):
informative_pairs.append((pair, tf))
return informative_pairs
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
metadata: Dict, **kwargs):
def feature_engineering_expand_all(
self, dataframe: DataFrame, period: int, metadata: Dict, **kwargs
):
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
@ -67,7 +67,6 @@ class freqai_test_classifier(IStrategy):
return dataframe
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
@ -75,7 +74,6 @@ class freqai_test_classifier(IStrategy):
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
@ -83,13 +81,13 @@ class freqai_test_classifier(IStrategy):
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
self.freqai.class_names = ["down", "up"]
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
dataframe["close"], 'up', 'down')
dataframe["&s-up_or_down"] = np.where(
dataframe["close"].shift(-100) > dataframe["close"], "up", "down"
)
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
self.freqai_info = self.config["freqai"]
dataframe = self.freqai.start(dataframe, metadata, self)
@ -97,15 +95,14 @@ class freqai_test_classifier(IStrategy):
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df['&s-up_or_down'] == 'up']
enter_long_conditions = [df["&s-up_or_down"] == "up"]
if enter_long_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
] = (1, "long")
enter_short_conditions = [df['&s-up_or_down'] == 'down']
enter_short_conditions = [df["&s-up_or_down"] == "down"]
if enter_short_conditions:
df.loc[
@ -115,5 +112,4 @@ class freqai_test_classifier(IStrategy):
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
return df

View File

@ -44,9 +44,9 @@ class freqai_test_multimodel_classifier_strat(IStrategy):
)
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
metadata: Dict, **kwargs):
def feature_engineering_expand_all(
self, dataframe: DataFrame, period: int, metadata: Dict, **kwargs
):
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
@ -54,7 +54,6 @@ class freqai_test_multimodel_classifier_strat(IStrategy):
return dataframe
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
@ -62,24 +61,23 @@ class freqai_test_multimodel_classifier_strat(IStrategy):
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["&s-up_or_down"] = np.where(
dataframe["close"].shift(-50) > dataframe["close"], "up", "down"
)
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-50) >
dataframe["close"], 'up', 'down')
dataframe['&s-up_or_down2'] = np.where(dataframe["close"].shift(-50) >
dataframe["close"], 'up2', 'down2')
dataframe["&s-up_or_down2"] = np.where(
dataframe["close"].shift(-50) > dataframe["close"], "up2", "down2"
)
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
self.freqai_info = self.config["freqai"]
dataframe = self.freqai.start(dataframe, metadata, self)
@ -89,7 +87,6 @@ class freqai_test_multimodel_classifier_strat(IStrategy):
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"]]
if enter_long_conditions:

View File

@ -43,9 +43,9 @@ class freqai_test_multimodel_strat(IStrategy):
)
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
metadata: Dict, **kwargs):
def feature_engineering_expand_all(
self, dataframe: DataFrame, period: int, metadata: Dict, **kwargs
):
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
@ -53,7 +53,6 @@ class freqai_test_multimodel_strat(IStrategy):
return dataframe
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
@ -61,14 +60,12 @@ class freqai_test_multimodel_strat(IStrategy):
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["&-s_close"] = (
dataframe["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
@ -83,8 +80,7 @@ class freqai_test_multimodel_strat(IStrategy):
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.max()
-
dataframe["close"]
- dataframe["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.min()
@ -93,7 +89,6 @@ class freqai_test_multimodel_strat(IStrategy):
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
self.freqai_info = self.config["freqai"]
dataframe = self.freqai.start(dataframe, metadata, self)
@ -103,7 +98,6 @@ class freqai_test_multimodel_strat(IStrategy):
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"]]
if enter_long_conditions:

View File

@ -43,9 +43,9 @@ class freqai_test_strat(IStrategy):
)
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
metadata: Dict, **kwargs):
def feature_engineering_expand_all(
self, dataframe: DataFrame, period: int, metadata: Dict, **kwargs
):
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
@ -53,7 +53,6 @@ class freqai_test_strat(IStrategy):
return dataframe
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
@ -61,14 +60,12 @@ class freqai_test_strat(IStrategy):
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["&-s_close"] = (
dataframe["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
@ -81,7 +78,6 @@ class freqai_test_strat(IStrategy):
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
self.freqai_info = self.config["freqai"]
dataframe = self.freqai.start(dataframe, metadata, self)
@ -91,7 +87,6 @@ class freqai_test_strat(IStrategy):
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"]]
if enter_long_conditions:

View File

@ -17,20 +17,18 @@ class HyperoptableStrategy(StrategyTestV3):
"""
buy_params = {
'buy_rsi': 35,
"buy_rsi": 35,
# Intentionally not specified, so "default" is tested
# 'buy_plusdi': 0.4
}
sell_params = {
'sell_rsi': 74,
'sell_minusdi': 0.4
}
sell_params = {"sell_rsi": 74, "sell_minusdi": 0.4}
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy')
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell',
load=False)
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space="buy")
sell_rsi = IntParameter(low=50, high=100, default=70, space="sell")
sell_minusdi = DecimalParameter(
low=0, high=1, default=0.5001, decimals=3, space="sell", load=False
)
protection_enabled = BooleanParameter(default=True)
protection_cooldown_lookback = IntParameter([0, 50], default=30)
@ -43,10 +41,12 @@ class HyperoptableStrategy(StrategyTestV3):
def protections(self):
prot = []
if self.protection_enabled.value:
prot.append({
prot.append(
{
"method": "CooldownPeriod",
"stop_duration_candles": self.protection_cooldown_lookback.value
})
"stop_duration_candles": self.protection_cooldown_lookback.value,
}
)
return prot
bot_loop_started = False
@ -60,7 +60,7 @@ class HyperoptableStrategy(StrategyTestV3):
Parameters can also be defined here ...
"""
self.bot_started = True
self.buy_rsi = IntParameter([0, 50], default=30, space='buy')
self.buy_rsi = IntParameter([0, 50], default=30, space="buy")
def informative_pairs(self):
"""
@ -84,16 +84,14 @@ class HyperoptableStrategy(StrategyTestV3):
"""
dataframe.loc[
(
(dataframe['rsi'] < self.buy_rsi.value) &
(dataframe['fastd'] < 35) &
(dataframe['adx'] > 30) &
(dataframe['plus_di'] > self.buy_plusdi.value)
) |
(
(dataframe['adx'] > 65) &
(dataframe['plus_di'] > self.buy_plusdi.value)
),
'buy'] = 1
(dataframe["rsi"] < self.buy_rsi.value)
& (dataframe["fastd"] < 35)
& (dataframe["adx"] > 30)
& (dataframe["plus_di"] > self.buy_plusdi.value)
)
| ((dataframe["adx"] > 65) & (dataframe["plus_di"] > self.buy_plusdi.value)),
"buy",
] = 1
return dataframe
@ -107,15 +105,13 @@ class HyperoptableStrategy(StrategyTestV3):
dataframe.loc[
(
(
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) |
(qtpylib.crossed_above(dataframe['fastd'], 70))
) &
(dataframe['adx'] > 10) &
(dataframe['minus_di'] > 0)
) |
(
(dataframe['adx'] > 70) &
(dataframe['minus_di'] > self.sell_minusdi.value)
),
'sell'] = 1
(qtpylib.crossed_above(dataframe["rsi"], self.sell_rsi.value))
| (qtpylib.crossed_above(dataframe["fastd"], 70))
)
& (dataframe["adx"] > 10)
& (dataframe["minus_di"] > 0)
)
| ((dataframe["adx"] > 70) & (dataframe["minus_di"] > self.sell_minusdi.value)),
"sell",
] = 1
return dataframe

View File

@ -15,20 +15,22 @@ class HyperoptableStrategyV2(StrategyTestV2):
"""
buy_params = {
'buy_rsi': 35,
"buy_rsi": 35,
# Intentionally not specified, so "default" is tested
# 'buy_plusdi': 0.4
}
sell_params = {
'sell_rsi': 74,
'sell_minusdi': 0.4
# Sell parameters
"sell_rsi": 74,
"sell_minusdi": 0.4,
}
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy')
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell',
load=False)
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space="buy")
sell_rsi = IntParameter(low=50, high=100, default=70, space="sell")
sell_minusdi = DecimalParameter(
low=0, high=1, default=0.5001, decimals=3, space="sell", load=False
)
protection_enabled = BooleanParameter(default=True)
protection_cooldown_lookback = IntParameter([0, 50], default=30)
@ -36,10 +38,12 @@ class HyperoptableStrategyV2(StrategyTestV2):
def protections(self):
prot = []
if self.protection_enabled.value:
prot.append({
prot.append(
{
"method": "CooldownPeriod",
"stop_duration_candles": self.protection_cooldown_lookback.value
})
"stop_duration_candles": self.protection_cooldown_lookback.value,
}
)
return prot
bot_loop_started = False
@ -51,4 +55,4 @@ class HyperoptableStrategyV2(StrategyTestV2):
"""
Parameters can also be defined here ...
"""
self.buy_rsi = IntParameter([0, 50], default=30, space='buy')
self.buy_rsi = IntParameter([0, 50], default=30, space="buy")

View File

@ -13,72 +13,73 @@ class InformativeDecoratorTest(IStrategy):
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
INTERFACE_VERSION = 2
stoploss = -0.10
timeframe = '5m'
timeframe = "5m"
startup_candle_count: int = 20
def informative_pairs(self):
# Intentionally return 2 tuples, must be converted to 3 in compatibility code
return [
('NEO/USDT', '5m'),
('NEO/USDT', '15m', ''),
('NEO/USDT', '2h', 'futures'),
("NEO/USDT", "5m"),
("NEO/USDT", "15m", ""),
("NEO/USDT", "2h", "futures"),
]
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['buy'] = 0
dataframe["buy"] = 0
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['sell'] = 0
dataframe["sell"] = 0
return dataframe
# Decorator stacking test.
@informative('30m')
@informative('1h')
@informative("30m")
@informative("1h")
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
dataframe["rsi"] = 14
return dataframe
# Simple informative test.
@informative('1h', 'NEO/{stake}')
@informative("1h", "NEO/{stake}")
def populate_indicators_neo_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
dataframe["rsi"] = 14
return dataframe
@informative('1h', '{base}/BTC')
@informative("1h", "{base}/BTC")
def populate_indicators_base_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
dataframe["rsi"] = 14
return dataframe
# Quote currency different from stake currency test.
@informative('1h', 'ETH/BTC', candle_type='spot')
@informative("1h", "ETH/BTC", candle_type="spot")
def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
dataframe["rsi"] = 14
return dataframe
# Formatting test.
@informative('30m', 'NEO/{stake}', '{column}_{BASE}_{QUOTE}_{base}_{quote}_{asset}_{timeframe}')
@informative("30m", "NEO/{stake}", "{column}_{BASE}_{QUOTE}_{base}_{quote}_{asset}_{timeframe}")
def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
dataframe["rsi"] = 14
return dataframe
# Custom formatter test
@informative('30m', 'ETH/{stake}', fmt=lambda column, **kwargs: column + '_from_callable')
@informative("30m", "ETH/{stake}", fmt=lambda column, **kwargs: column + "_from_callable")
def populate_indicators_eth_30m(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
dataframe["rsi"] = 14
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Strategy timeframe indicators for current pair.
dataframe['rsi'] = 14
dataframe["rsi"] = 14
# Informative pairs are available in this method.
dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h']
dataframe["rsi_less"] = dataframe["rsi"] < dataframe["rsi_1h"]
# Mixing manual informative pairs with decorators.
informative = self.dp.get_pair_dataframe('NEO/USDT', '5m', '')
informative['rsi'] = 14
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, '5m', ffill=True)
informative = self.dp.get_pair_dataframe("NEO/USDT", "5m", "")
informative["rsi"] = 14
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, "5m", ffill=True)
return dataframe

View File

@ -10,49 +10,44 @@ class strategy_test_v3_with_lookahead_bias(IStrategy):
INTERFACE_VERSION = 3
# Minimal ROI designed for the strategy
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
minimal_roi = {"40": 0.0, "30": 0.01, "20": 0.02, "0": 0.04}
# Optimal stoploss designed for the strategy
stoploss = -0.10
# Optimal timeframe for the strategy
timeframe = '5m'
scenario = CategoricalParameter(['no_bias', 'bias1'], default='bias1', space="buy")
timeframe = "5m"
scenario = CategoricalParameter(["no_bias", "bias1"], default="bias1", space="buy")
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 20
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# bias is introduced here
if self.scenario.value != 'no_bias':
ichi = ichimoku(dataframe,
if self.scenario.value != "no_bias":
ichi = ichimoku(
dataframe,
conversion_line_period=20,
base_line_periods=60,
laggin_span=120,
displacement=30)
dataframe['chikou_span'] = ichi['chikou_span']
displacement=30,
)
dataframe["chikou_span"] = ichi["chikou_span"]
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
if self.scenario.value == 'no_bias':
dataframe.loc[dataframe['close'].shift(10) < dataframe['close'], 'enter_long'] = 1
if self.scenario.value == "no_bias":
dataframe.loc[dataframe["close"].shift(10) < dataframe["close"], "enter_long"] = 1
else:
dataframe.loc[dataframe['close'].shift(-10) > dataframe['close'], 'enter_long'] = 1
dataframe.loc[dataframe["close"].shift(-10) > dataframe["close"], "enter_long"] = 1
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
if self.scenario.value == 'no_bias':
dataframe.loc[
dataframe['close'].shift(10) < dataframe['close'], 'exit'] = 1
if self.scenario.value == "no_bias":
dataframe.loc[dataframe["close"].shift(10) < dataframe["close"], "exit"] = 1
else:
dataframe.loc[
dataframe['close'].shift(-10) > dataframe['close'], 'exit'] = 1
dataframe.loc[dataframe["close"].shift(-10) > dataframe["close"], "exit"] = 1
return dataframe

View File

@ -15,28 +15,24 @@ class StrategyTestV2(IStrategy):
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
INTERFACE_VERSION = 2
# Minimal ROI designed for the strategy
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
minimal_roi = {"40": 0.0, "30": 0.01, "20": 0.02, "0": 0.04}
# Optimal stoploss designed for the strategy
stoploss = -0.10
# Optimal timeframe for the strategy
timeframe = '5m'
timeframe = "5m"
# Optional order type mapping
order_types = {
'entry': 'limit',
'exit': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
"entry": "limit",
"exit": "limit",
"stoploss": "limit",
"stoploss_on_exchange": False,
}
# Number of candles the strategy requires before producing valid signals
@ -44,8 +40,8 @@ class StrategyTestV2(IStrategy):
# Optional time in force for orders
order_time_in_force = {
'entry': 'gtc',
'exit': 'gtc',
"entry": "gtc",
"exit": "gtc",
}
# Test legacy use_sell_signal definition
use_sell_signal = False
@ -69,36 +65,36 @@ class StrategyTestV2(IStrategy):
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
dataframe["adx"] = ta.ADX(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe["macd"] = macd["macd"]
dataframe["macdsignal"] = macd["macdsignal"]
dataframe["macdhist"] = macd["macdhist"]
# Minus Directional Indicator / Movement
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
dataframe["minus_di"] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe["plus_di"] = ta.PLUS_DI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
dataframe["rsi"] = ta.RSI(dataframe)
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
dataframe["fastd"] = stoch_fast["fastd"]
dataframe["fastk"] = stoch_fast["fastk"]
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
dataframe["bb_lowerband"] = bollinger["lower"]
dataframe["bb_middleband"] = bollinger["mid"]
dataframe["bb_upperband"] = bollinger["upper"]
# EMA - Exponential Moving Average
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe["ema10"] = ta.EMA(dataframe, timeperiod=10)
return dataframe
@ -111,16 +107,14 @@ class StrategyTestV2(IStrategy):
"""
dataframe.loc[
(
(dataframe['rsi'] < 35) &
(dataframe['fastd'] < 35) &
(dataframe['adx'] > 30) &
(dataframe['plus_di'] > 0.5)
) |
(
(dataframe['adx'] > 65) &
(dataframe['plus_di'] > 0.5)
),
'buy'] = 1
(dataframe["rsi"] < 35)
& (dataframe["fastd"] < 35)
& (dataframe["adx"] > 30)
& (dataframe["plus_di"] > 0.5)
)
| ((dataframe["adx"] > 65) & (dataframe["plus_di"] > 0.5)),
"buy",
] = 1
return dataframe
@ -134,15 +128,13 @@ class StrategyTestV2(IStrategy):
dataframe.loc[
(
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) |
(qtpylib.crossed_above(dataframe['fastd'], 70))
) &
(dataframe['adx'] > 10) &
(dataframe['minus_di'] > 0)
) |
(
(dataframe['adx'] > 70) &
(dataframe['minus_di'] > 0.5)
),
'sell'] = 1
(qtpylib.crossed_above(dataframe["rsi"], 70))
| (qtpylib.crossed_above(dataframe["fastd"], 70))
)
& (dataframe["adx"] > 10)
& (dataframe["minus_di"] > 0)
)
| ((dataframe["adx"] > 70) & (dataframe["minus_di"] > 0.5)),
"sell",
] = 1
return dataframe

View File

@ -25,15 +25,11 @@ class StrategyTestV3(IStrategy):
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
INTERFACE_VERSION = 3
# Minimal ROI designed for the strategy
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
minimal_roi = {"40": 0.0, "30": 0.01, "20": 0.02, "0": 0.04}
# Optimal max_open_trades for the strategy
max_open_trades = -1
@ -42,14 +38,14 @@ class StrategyTestV3(IStrategy):
stoploss = -0.10
# Optimal timeframe for the strategy
timeframe = '5m'
timeframe = "5m"
# Optional order type mapping
order_types = {
'entry': 'limit',
'exit': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
"entry": "limit",
"exit": "limit",
"stoploss": "limit",
"stoploss_on_exchange": False,
}
# Number of candles the strategy requires before producing valid signals
@ -57,26 +53,24 @@ class StrategyTestV3(IStrategy):
# Optional time in force for orders
order_time_in_force = {
'entry': 'gtc',
'exit': 'gtc',
"entry": "gtc",
"exit": "gtc",
}
buy_params = {
'buy_rsi': 35,
"buy_rsi": 35,
# Intentionally not specified, so "default" is tested
# 'buy_plusdi': 0.4
}
sell_params = {
'sell_rsi': 74,
'sell_minusdi': 0.4
}
sell_params = {"sell_rsi": 74, "sell_minusdi": 0.4}
buy_rsi = IntParameter([0, 50], default=30, space='buy')
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy')
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell',
load=False)
buy_rsi = IntParameter([0, 50], default=30, space="buy")
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space="buy")
sell_rsi = IntParameter(low=50, high=100, default=70, space="sell")
sell_minusdi = DecimalParameter(
low=0, high=1, default=0.5001, decimals=3, space="sell", load=False
)
protection_enabled = BooleanParameter(default=True)
protection_cooldown_lookback = IntParameter([0, 50], default=30)
@ -97,67 +91,61 @@ class StrategyTestV3(IStrategy):
self.bot_started = True
def informative_pairs(self):
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
dataframe["adx"] = ta.ADX(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe["macd"] = macd["macd"]
dataframe["macdsignal"] = macd["macdsignal"]
dataframe["macdhist"] = macd["macdhist"]
# Minus Directional Indicator / Movement
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
dataframe["minus_di"] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe["plus_di"] = ta.PLUS_DI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
dataframe["rsi"] = ta.RSI(dataframe)
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
dataframe["fastd"] = stoch_fast["fastd"]
dataframe["fastk"] = stoch_fast["fastk"]
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
dataframe["bb_lowerband"] = bollinger["lower"]
dataframe["bb_middleband"] = bollinger["mid"]
dataframe["bb_upperband"] = bollinger["upper"]
# EMA - Exponential Moving Average
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe["ema10"] = ta.EMA(dataframe, timeperiod=10)
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['rsi'] < self.buy_rsi.value) &
(dataframe['fastd'] < 35) &
(dataframe['adx'] > 30) &
(dataframe['plus_di'] > self.buy_plusdi.value)
) |
(
(dataframe['adx'] > 65) &
(dataframe['plus_di'] > self.buy_plusdi.value)
),
'enter_long'] = 1
(dataframe["rsi"] < self.buy_rsi.value)
& (dataframe["fastd"] < 35)
& (dataframe["adx"] > 30)
& (dataframe["plus_di"] > self.buy_plusdi.value)
)
| ((dataframe["adx"] > 65) & (dataframe["plus_di"] > self.buy_plusdi.value)),
"enter_long",
] = 1
dataframe.loc[
(
qtpylib.crossed_below(dataframe['rsi'], self.sell_rsi.value)
),
('enter_short', 'enter_tag')] = (1, 'short_Tag')
(qtpylib.crossed_below(dataframe["rsi"], self.sell_rsi.value)),
("enter_short", "enter_tag"),
] = (1, "short_Tag")
return dataframe
@ -165,41 +153,53 @@ class StrategyTestV3(IStrategy):
dataframe.loc[
(
(
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) |
(qtpylib.crossed_above(dataframe['fastd'], 70))
) &
(dataframe['adx'] > 10) &
(dataframe['minus_di'] > 0)
) |
(
(dataframe['adx'] > 70) &
(dataframe['minus_di'] > self.sell_minusdi.value)
),
'exit_long'] = 1
(qtpylib.crossed_above(dataframe["rsi"], self.sell_rsi.value))
| (qtpylib.crossed_above(dataframe["fastd"], 70))
)
& (dataframe["adx"] > 10)
& (dataframe["minus_di"] > 0)
)
| ((dataframe["adx"] > 70) & (dataframe["minus_di"] > self.sell_minusdi.value)),
"exit_long",
] = 1
dataframe.loc[
(
qtpylib.crossed_above(dataframe['rsi'], self.buy_rsi.value)
),
('exit_short', 'exit_tag')] = (1, 'short_Tag')
(qtpylib.crossed_above(dataframe["rsi"], self.buy_rsi.value)),
("exit_short", "exit_tag"),
] = (1, "short_Tag")
return dataframe
def leverage(self, pair: str, current_time: datetime, current_rate: float,
proposed_leverage: float, max_leverage: float, entry_tag: Optional[str],
side: str, **kwargs) -> float:
def leverage(
self,
pair: str,
current_time: datetime,
current_rate: float,
proposed_leverage: float,
max_leverage: float,
entry_tag: Optional[str],
side: str,
**kwargs,
) -> float:
# Return 3.0 in all cases.
# Bot-logic must make sure it's an allowed leverage and eventually adjust accordingly.
return 3.0
def adjust_trade_position(self, trade: Trade, current_time: datetime,
current_rate: float, current_profit: float,
min_stake: Optional[float], max_stake: float,
current_entry_rate: float, current_exit_rate: float,
current_entry_profit: float, current_exit_profit: float,
**kwargs) -> Optional[float]:
def adjust_trade_position(
self,
trade: Trade,
current_time: datetime,
current_rate: float,
current_profit: float,
min_stake: Optional[float],
max_stake: float,
current_entry_rate: float,
current_exit_rate: float,
current_entry_profit: float,
current_exit_profit: float,
**kwargs,
) -> Optional[float]:
if current_profit < -0.0075:
orders = trade.select_filled_orders(trade.entry_side)
return round(orders[0].stake_amount, 0)

View File

@ -17,24 +17,28 @@ class StrategyTestV3CustomEntryPrice(StrategyTestV3):
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
new_entry_price: float = 0.001
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
dataframe['volume'] > 0,
'enter_long'] = 1
dataframe.loc[dataframe["volume"] > 0, "enter_long"] = 1
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return dataframe
def custom_entry_price(self, pair: str, trade: Optional[Trade], current_time: datetime,
def custom_entry_price(
self,
pair: str,
trade: Optional[Trade],
current_time: datetime,
proposed_rate: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
entry_tag: Optional[str],
side: str,
**kwargs,
) -> float:
return self.new_entry_price

View File

@ -10,37 +10,33 @@ class strategy_test_v3_recursive_issue(IStrategy):
INTERFACE_VERSION = 3
# Minimal ROI designed for the strategy
minimal_roi = {
"0": 0.04
}
minimal_roi = {"0": 0.04}
# Optimal stoploss designed for the strategy
stoploss = -0.10
# Optimal timeframe for the strategy
timeframe = '5m'
scenario = CategoricalParameter(['no_bias', 'bias1', 'bias2'], default='bias1', space="buy")
timeframe = "5m"
scenario = CategoricalParameter(["no_bias", "bias1", "bias2"], default="bias1", space="buy")
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 100
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# bias is introduced here
if self.scenario.value == 'no_bias':
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
if self.scenario.value == "no_bias":
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
else:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=50)
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=50)
if self.scenario.value == 'bias2':
if self.scenario.value == "bias2":
# Has both bias1 and bias2
dataframe['rsi_lookahead'] = ta.RSI(dataframe, timeperiod=50).shift(-1)
dataframe["rsi_lookahead"] = ta.RSI(dataframe, timeperiod=50).shift(-1)
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return dataframe

View File

@ -9,33 +9,32 @@ from tests.conftest import create_mock_trades_usdt, log_has
def test_binance_mig_data_conversion(default_conf_usdt, tmp_path, testdatadir):
# call doing nothing (spot mode)
migrate_binance_futures_data(default_conf_usdt)
default_conf_usdt['trading_mode'] = 'futures'
pair_old = 'XRP_USDT'
pair_unified = 'XRP_USDT_USDT'
futures_src = testdatadir / 'futures'
futures_dst = tmp_path / 'futures'
default_conf_usdt["trading_mode"] = "futures"
pair_old = "XRP_USDT"
pair_unified = "XRP_USDT_USDT"
futures_src = testdatadir / "futures"
futures_dst = tmp_path / "futures"
futures_dst.mkdir()
files = [
'-1h-mark.feather',
'-1h-futures.feather',
'-8h-funding_rate.feather',
'-8h-mark.feather',
"-1h-mark.feather",
"-1h-futures.feather",
"-8h-funding_rate.feather",
"-8h-mark.feather",
]
# Copy files to tmpdir and rename to old naming
for file in files:
fn_after = futures_dst / f'{pair_old}{file}'
shutil.copy(futures_src / f'{pair_unified}{file}', fn_after)
fn_after = futures_dst / f"{pair_old}{file}"
shutil.copy(futures_src / f"{pair_unified}{file}", fn_after)
default_conf_usdt['datadir'] = tmp_path
default_conf_usdt["datadir"] = tmp_path
# Migrate files to unified namings
migrate_binance_futures_data(default_conf_usdt)
for file in files:
fn_after = futures_dst / f'{pair_unified}{file}'
fn_after = futures_dst / f"{pair_unified}{file}"
assert fn_after.exists()
@ -47,19 +46,19 @@ def test_binance_mig_db_conversion(default_conf_usdt, fee, caplog):
create_mock_trades_usdt(fee, None)
for t in Trade.get_trades():
t.trading_mode = 'FUTURES'
t.exchange = 'binance'
t.trading_mode = "FUTURES"
t.exchange = "binance"
Trade.commit()
default_conf_usdt['trading_mode'] = 'futures'
default_conf_usdt["trading_mode"] = "futures"
migrate_binance_futures_names(default_conf_usdt)
assert log_has('Migrating binance futures pairs in database.', caplog)
assert log_has("Migrating binance futures pairs in database.", caplog)
def test_migration_wrapper(default_conf_usdt, mocker):
default_conf_usdt['trading_mode'] = 'futures'
binmock = mocker.patch('freqtrade.util.migrations.migrate_binance_futures_data')
funding_mock = mocker.patch('freqtrade.util.migrations.migrate_funding_fee_timeframe')
default_conf_usdt["trading_mode"] = "futures"
binmock = mocker.patch("freqtrade.util.migrations.migrate_binance_futures_data")
funding_mock = mocker.patch("freqtrade.util.migrations.migrate_funding_fee_timeframe")
migrate_data(default_conf_usdt)
assert binmock.call_count == 1

View File

@ -1,82 +1,82 @@
from freqtrade.util import FtPrecise
ws = FtPrecise('-1.123e-6')
ws = FtPrecise('-1.123e-6')
xs = FtPrecise('0.00000002')
ys = FtPrecise('69696900000')
zs = FtPrecise('0')
ws = FtPrecise("-1.123e-6")
ws = FtPrecise("-1.123e-6")
xs = FtPrecise("0.00000002")
ys = FtPrecise("69696900000")
zs = FtPrecise("0")
def test_FtPrecise():
assert ys * xs == '1393.938'
assert xs * ys == '1393.938'
assert ys * xs == "1393.938"
assert xs * ys == "1393.938"
assert ys + xs == '69696900000.00000002'
assert xs + ys == '69696900000.00000002'
assert xs - ys == '-69696899999.99999998'
assert ys - xs == '69696899999.99999998'
assert xs / ys == '0'
assert ys / xs == '3484845000000000000'
assert ys + xs == "69696900000.00000002"
assert xs + ys == "69696900000.00000002"
assert xs - ys == "-69696899999.99999998"
assert ys - xs == "69696899999.99999998"
assert xs / ys == "0"
assert ys / xs == "3484845000000000000"
assert ws * xs == '-0.00000000000002246'
assert xs * ws == '-0.00000000000002246'
assert ws * xs == "-0.00000000000002246"
assert xs * ws == "-0.00000000000002246"
assert ws + xs == '-0.000001103'
assert xs + ws == '-0.000001103'
assert ws + xs == "-0.000001103"
assert xs + ws == "-0.000001103"
assert xs - ws == '0.000001143'
assert ws - xs == '-0.000001143'
assert xs - ws == "0.000001143"
assert ws - xs == "-0.000001143"
assert xs / ws == '-0.017809439002671415'
assert ws / xs == '-56.15'
assert xs / ws == "-0.017809439002671415"
assert ws / xs == "-56.15"
assert zs * ws == '0'
assert zs * xs == '0'
assert zs * ys == '0'
assert ws * zs == '0'
assert xs * zs == '0'
assert ys * zs == '0'
assert zs * ws == "0"
assert zs * xs == "0"
assert zs * ys == "0"
assert ws * zs == "0"
assert xs * zs == "0"
assert ys * zs == "0"
assert zs + ws == '-0.000001123'
assert zs + xs == '0.00000002'
assert zs + ys == '69696900000'
assert ws + zs == '-0.000001123'
assert xs + zs == '0.00000002'
assert ys + zs == '69696900000'
assert zs + ws == "-0.000001123"
assert zs + xs == "0.00000002"
assert zs + ys == "69696900000"
assert ws + zs == "-0.000001123"
assert xs + zs == "0.00000002"
assert ys + zs == "69696900000"
assert abs(FtPrecise('-500.1')) == '500.1'
assert abs(FtPrecise('213')) == '213'
assert abs(FtPrecise("-500.1")) == "500.1"
assert abs(FtPrecise("213")) == "213"
assert abs(FtPrecise('-500.1')) == '500.1'
assert -FtPrecise('213') == '-213'
assert abs(FtPrecise("-500.1")) == "500.1"
assert -FtPrecise("213") == "-213"
assert FtPrecise('10.1') % FtPrecise('0.5') == '0.1'
assert FtPrecise('5550') % FtPrecise('120') == '30'
assert FtPrecise("10.1") % FtPrecise("0.5") == "0.1"
assert FtPrecise("5550") % FtPrecise("120") == "30"
assert FtPrecise('-0.0') == FtPrecise('0')
assert FtPrecise('5.534000') == FtPrecise('5.5340')
assert FtPrecise("-0.0") == FtPrecise("0")
assert FtPrecise("5.534000") == FtPrecise("5.5340")
assert min(FtPrecise('-3.1415'), FtPrecise('-2')) == '-3.1415'
assert min(FtPrecise("-3.1415"), FtPrecise("-2")) == "-3.1415"
assert max(FtPrecise('3.1415'), FtPrecise('-2')) == '3.1415'
assert max(FtPrecise("3.1415"), FtPrecise("-2")) == "3.1415"
assert FtPrecise('2') > FtPrecise('1.2345')
assert not FtPrecise('-3.1415') > FtPrecise('-2')
assert not FtPrecise('3.1415') > FtPrecise('3.1415')
assert FtPrecise.string_gt('3.14150000000000000000001', '3.1415')
assert FtPrecise("2") > FtPrecise("1.2345")
assert not FtPrecise("-3.1415") > FtPrecise("-2")
assert not FtPrecise("3.1415") > FtPrecise("3.1415")
assert FtPrecise.string_gt("3.14150000000000000000001", "3.1415")
assert FtPrecise('3.1415') >= FtPrecise('3.1415')
assert FtPrecise('3.14150000000000000000001') >= FtPrecise('3.1415')
assert FtPrecise("3.1415") >= FtPrecise("3.1415")
assert FtPrecise("3.14150000000000000000001") >= FtPrecise("3.1415")
assert not FtPrecise('3.1415') < FtPrecise('3.1415')
assert not FtPrecise("3.1415") < FtPrecise("3.1415")
assert FtPrecise('3.1415') <= FtPrecise('3.1415')
assert FtPrecise('3.1415') <= FtPrecise('3.14150000000000000000001')
assert FtPrecise("3.1415") <= FtPrecise("3.1415")
assert FtPrecise("3.1415") <= FtPrecise("3.14150000000000000000001")
assert FtPrecise(213) == '213'
assert FtPrecise(-213) == '-213'
assert str(FtPrecise(-213)) == '-213'
assert FtPrecise(213.2) == '213.2'
assert FtPrecise(213) == "213"
assert FtPrecise(-213) == "-213"
assert str(FtPrecise(-213)) == "-213"
assert FtPrecise(213.2) == "213.2"
assert float(FtPrecise(213.2)) == 213.2
assert float(FtPrecise(-213.2)) == -213.2

View File

@ -49,16 +49,18 @@ def test_dt_ts_none():
def test_dt_utc():
assert dt_utc(2023, 5, 5) == datetime(2023, 5, 5, tzinfo=timezone.utc)
assert dt_utc(2023, 5, 5, 0, 0, 0, 555500) == datetime(2023, 5, 5, 0, 0, 0, 555500,
tzinfo=timezone.utc)
assert dt_utc(2023, 5, 5, 0, 0, 0, 555500) == datetime(
2023, 5, 5, 0, 0, 0, 555500, tzinfo=timezone.utc
)
@pytest.mark.parametrize('as_ms', [True, False])
@pytest.mark.parametrize("as_ms", [True, False])
def test_dt_from_ts(as_ms):
multi = 1000 if as_ms else 1
assert dt_from_ts(1683244800.0 * multi) == datetime(2023, 5, 5, tzinfo=timezone.utc)
assert dt_from_ts(1683244800.5555 * multi) == datetime(2023, 5, 5, 0, 0, 0, 555500,
tzinfo=timezone.utc)
assert dt_from_ts(1683244800.5555 * multi) == datetime(
2023, 5, 5, 0, 0, 0, 555500, tzinfo=timezone.utc
)
# As int
assert dt_from_ts(1683244800 * multi) == datetime(2023, 5, 5, tzinfo=timezone.utc)
# As milliseconds
@ -73,18 +75,18 @@ def test_dt_floor_day():
def test_shorten_date() -> None:
str_data = '1 day, 2 hours, 3 minutes, 4 seconds ago'
str_shorten_data = '1 d, 2 h, 3 min, 4 sec ago'
str_data = "1 day, 2 hours, 3 minutes, 4 seconds ago"
str_shorten_data = "1 d, 2 h, 3 min, 4 sec ago"
assert shorten_date(str_data) == str_shorten_data
def test_dt_humanize() -> None:
assert dt_humanize_delta(dt_now()) == 'now'
assert dt_humanize_delta(dt_now() - timedelta(minutes=50)) == '50 minutes ago'
assert dt_humanize_delta(dt_now() - timedelta(hours=16)) == '16 hours ago'
assert dt_humanize_delta(dt_now() - timedelta(hours=16, minutes=30)) == '16 hours ago'
assert dt_humanize_delta(dt_now() - timedelta(days=16, hours=10, minutes=25)) == '16 days ago'
assert dt_humanize_delta(dt_now() - timedelta(minutes=50)) == '50 minutes ago'
assert dt_humanize_delta(dt_now()) == "now"
assert dt_humanize_delta(dt_now() - timedelta(minutes=50)) == "50 minutes ago"
assert dt_humanize_delta(dt_now() - timedelta(hours=16)) == "16 hours ago"
assert dt_humanize_delta(dt_now() - timedelta(hours=16, minutes=30)) == "16 hours ago"
assert dt_humanize_delta(dt_now() - timedelta(days=16, hours=10, minutes=25)) == "16 days ago"
assert dt_humanize_delta(dt_now() - timedelta(minutes=50)) == "50 minutes ago"
def test_format_ms_time() -> None:
@ -93,20 +95,19 @@ def test_format_ms_time() -> None:
date = format_ms_time(date_in_epoch_ms)
assert isinstance(date, str)
res = datetime(2018, 4, 10, 18, 2, 1, tzinfo=timezone.utc)
assert date == res.strftime('%Y-%m-%dT%H:%M:%S')
assert date == '2018-04-10T18:02:01'
assert date == res.strftime("%Y-%m-%dT%H:%M:%S")
assert date == "2018-04-10T18:02:01"
res = datetime(2017, 12, 13, 8, 2, 1, tzinfo=timezone.utc)
# Date 2017-12-13 08:02:01
date_in_epoch_ms = 1513152121000
assert format_ms_time(date_in_epoch_ms) == res.strftime('%Y-%m-%dT%H:%M:%S')
assert format_ms_time(date_in_epoch_ms) == res.strftime("%Y-%m-%dT%H:%M:%S")
def test_format_date() -> None:
date = datetime(2023, 9, 1, 5, 2, 3, 455555, tzinfo=timezone.utc)
assert format_date(date) == '2023-09-01 05:02:03'
assert format_date(None) == ''
assert format_date(date) == "2023-09-01 05:02:03"
assert format_date(None) == ""
date = datetime(2021, 9, 30, 22, 59, 3, 455555, tzinfo=timezone.utc)
assert format_date(date) == '2021-09-30 22:59:03'
assert format_date(None) == ''
assert format_date(date) == "2021-09-30 22:59:03"
assert format_date(None) == ""

View File

@ -2,36 +2,35 @@ from freqtrade.util import decimals_per_coin, fmt_coin, round_value
def test_decimals_per_coin():
assert decimals_per_coin('USDT') == 3
assert decimals_per_coin('EUR') == 3
assert decimals_per_coin('BTC') == 8
assert decimals_per_coin('ETH') == 5
assert decimals_per_coin("USDT") == 3
assert decimals_per_coin("EUR") == 3
assert decimals_per_coin("BTC") == 8
assert decimals_per_coin("ETH") == 5
def test_fmt_coin():
assert fmt_coin(222.222222, 'USDT') == '222.222 USDT'
assert fmt_coin(222.2, 'USDT', keep_trailing_zeros=True) == '222.200 USDT'
assert fmt_coin(222.2, 'USDT') == '222.2 USDT'
assert fmt_coin(222.12745, 'EUR') == '222.127 EUR'
assert fmt_coin(0.1274512123, 'BTC') == '0.12745121 BTC'
assert fmt_coin(0.1274512123, 'ETH') == '0.12745 ETH'
assert fmt_coin(222.222222, "USDT") == "222.222 USDT"
assert fmt_coin(222.2, "USDT", keep_trailing_zeros=True) == "222.200 USDT"
assert fmt_coin(222.2, "USDT") == "222.2 USDT"
assert fmt_coin(222.12745, "EUR") == "222.127 EUR"
assert fmt_coin(0.1274512123, "BTC") == "0.12745121 BTC"
assert fmt_coin(0.1274512123, "ETH") == "0.12745 ETH"
assert fmt_coin(222.222222, 'USDT', False) == '222.222'
assert fmt_coin(222.2, 'USDT', False) == '222.2'
assert fmt_coin(222.00, 'USDT', False) == '222'
assert fmt_coin(222.12745, 'EUR', False) == '222.127'
assert fmt_coin(0.1274512123, 'BTC', False) == '0.12745121'
assert fmt_coin(0.1274512123, 'ETH', False) == '0.12745'
assert fmt_coin(222.2, 'USDT', False, True) == '222.200'
assert fmt_coin(222.222222, "USDT", False) == "222.222"
assert fmt_coin(222.2, "USDT", False) == "222.2"
assert fmt_coin(222.00, "USDT", False) == "222"
assert fmt_coin(222.12745, "EUR", False) == "222.127"
assert fmt_coin(0.1274512123, "BTC", False) == "0.12745121"
assert fmt_coin(0.1274512123, "ETH", False) == "0.12745"
assert fmt_coin(222.2, "USDT", False, True) == "222.200"
def test_round_value():
assert round_value(222.222222, 3) == '222.222'
assert round_value(222.2, 3) == '222.2'
assert round_value(222.00, 3) == '222'
assert round_value(222.12745, 3) == '222.127'
assert round_value(0.1274512123, 8) == '0.12745121'
assert round_value(0.1274512123, 5) == '0.12745'
assert round_value(222.2, 3, True) == '222.200'
assert round_value(222.2, 0, True) == '222'
assert round_value(222.222222, 3) == "222.222"
assert round_value(222.2, 3) == "222.2"
assert round_value(222.00, 3) == "222"
assert round_value(222.12745, 3) == "222.127"
assert round_value(0.1274512123, 8) == "0.12745121"
assert round_value(0.1274512123, 5) == "0.12745"
assert round_value(222.2, 3, True) == "222.200"
assert round_value(222.2, 0, True) == "222"

View File

@ -4,22 +4,21 @@ from freqtrade.util.migrations import migrate_funding_fee_timeframe
def test_migrate_funding_rate_timeframe(default_conf_usdt, tmp_path, testdatadir):
copytree(testdatadir / 'futures', tmp_path / 'futures')
file_4h = tmp_path / 'futures' / 'XRP_USDT_USDT-4h-funding_rate.feather'
file_8h = tmp_path / 'futures' / 'XRP_USDT_USDT-8h-funding_rate.feather'
file_1h = tmp_path / 'futures' / 'XRP_USDT_USDT-1h-futures.feather'
copytree(testdatadir / "futures", tmp_path / "futures")
file_4h = tmp_path / "futures" / "XRP_USDT_USDT-4h-funding_rate.feather"
file_8h = tmp_path / "futures" / "XRP_USDT_USDT-8h-funding_rate.feather"
file_1h = tmp_path / "futures" / "XRP_USDT_USDT-1h-futures.feather"
file_8h.rename(file_4h)
assert file_1h.exists()
assert file_4h.exists()
assert not file_8h.exists()
default_conf_usdt['datadir'] = tmp_path
default_conf_usdt["datadir"] = tmp_path
# Inactive on spot trading ...
migrate_funding_fee_timeframe(default_conf_usdt, None)
default_conf_usdt['trading_mode'] = 'futures'
default_conf_usdt["trading_mode"] = "futures"
migrate_funding_fee_timeframe(default_conf_usdt, None)

View File

@ -6,10 +6,8 @@ from freqtrade.util import MeasureTime
def test_measure_time():
callback = MagicMock()
with time_machine.travel("2021-09-01 05:00:00 +00:00", tick=False) as t:
measure = MeasureTime(callback, 5, ttl=60)
with measure:
pass

View File

@ -4,31 +4,29 @@ from freqtrade.util import PeriodicCache
def test_ttl_cache():
with time_machine.travel("2021-09-01 05:00:00 +00:00", tick=False) as t:
cache = PeriodicCache(5, ttl=60)
cache1h = PeriodicCache(5, ttl=3600)
assert cache.timer() == 1630472400.0
cache['a'] = 1235
cache1h['a'] = 555123
assert 'a' in cache
assert 'a' in cache1h
cache["a"] = 1235
cache1h["a"] = 555123
assert "a" in cache
assert "a" in cache1h
t.move_to("2021-09-01 05:00:59 +00:00")
assert 'a' in cache
assert 'a' in cache1h
assert "a" in cache
assert "a" in cache1h
# Cache expired
t.move_to("2021-09-01 05:01:00 +00:00")
assert 'a' not in cache
assert 'a' in cache1h
assert "a" not in cache
assert "a" in cache1h
t.move_to("2021-09-01 05:59:59 +00:00")
assert 'a' not in cache
assert 'a' in cache1h
assert "a" not in cache
assert "a" in cache1h
t.move_to("2021-09-01 06:00:00 +00:00")
assert 'a' not in cache
assert 'a' not in cache1h
assert "a" not in cache
assert "a" not in cache1h

View File

@ -5,15 +5,16 @@ from freqtrade.util import render_template, render_template_with_fallback
def test_render_template_fallback():
from jinja2.exceptions import TemplateNotFound
with pytest.raises(TemplateNotFound):
val = render_template(
templatefile='subtemplates/indicators_does-not-exist.j2',
templatefile="subtemplates/indicators_does-not-exist.j2",
arguments={},
)
val = render_template_with_fallback(
templatefile='strategy_subtemplates/indicators_does-not-exist.j2',
templatefallbackfile='strategy_subtemplates/indicators_minimal.j2',
templatefile="strategy_subtemplates/indicators_does-not-exist.j2",
templatefallbackfile="strategy_subtemplates/indicators_minimal.j2",
)
assert isinstance(val, str)
assert 'if self.dp' in val
assert "if self.dp" in val