mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-11 02:33:55 +00:00
First cut, Bslap
science project replacement for freqtrade backtest analysis - appprox 300-500x quicker to execute - fixes stop on close take close price bug in FT Bslap is configurable but by default stops are triggerd on low and pay stop price Not implimented dynamic stops or roi
This commit is contained in:
parent
bd46b4faf3
commit
90e3c38757
|
@ -21,6 +21,8 @@ from freqtrade.configuration import Configuration
|
|||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.persistence import Trade
|
||||
from profilehooks import profile
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -67,6 +69,8 @@ class Backtesting(object):
|
|||
self.exchange = Exchange(self.config)
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
self.stop_loss_value = self.analyze.strategy.stoploss
|
||||
|
||||
@staticmethod
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
|
@ -186,6 +190,7 @@ class Backtesting(object):
|
|||
return btr
|
||||
return None
|
||||
|
||||
@profile
|
||||
def backtest(self, args: Dict) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
|
@ -201,55 +206,481 @@ class Backtesting(object):
|
|||
realistic: do we try to simulate realistic trades? (default: True)
|
||||
:return: DataFrame
|
||||
"""
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
realistic = args.get('realistic', False)
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
########################### Call out BSlap instead of using FT
|
||||
bslap_results: list = []
|
||||
last_bslap_resultslist = []
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
ticker_data = self.populate_sell_trend(
|
||||
self.populate_buy_trend(pair_data))[headers].copy()
|
||||
self.populate_buy_trend(pair_data))[headers].copy()
|
||||
|
||||
# to avoid using data from future, we buy/sell with signal from previous candle
|
||||
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
||||
bslap_pair_results = self.backslap_pair(ticker_data, pair)
|
||||
|
||||
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||
last_bslap_results = bslap_results
|
||||
bslap_results = last_bslap_results + bslap_pair_results
|
||||
bslap_results_df = DataFrame(bslap_results)
|
||||
print(bslap_results_df.dtypes())
|
||||
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
ticker = [x for x in ticker_data.itertuples()]
|
||||
return bslap_results_df
|
||||
########################### Original BT loop
|
||||
# for pair, pair_data in processed.items():
|
||||
# pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
#
|
||||
# ticker_data = self.populate_sell_trend(
|
||||
# self.populate_buy_trend(pair_data))[headers].copy()
|
||||
#
|
||||
# # to avoid using data from future, we buy/sell with signal from previous candle
|
||||
# ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||
# ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
||||
#
|
||||
# ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||
#
|
||||
# # Convert from Pandas to list for performance reasons
|
||||
# # (Looping Pandas is slow.)
|
||||
# ticker = [x for x in ticker_data.itertuples()]
|
||||
#
|
||||
# lock_pair_until = None
|
||||
# for index, row in enumerate(ticker):
|
||||
# if row.buy == 0 or row.sell == 1:
|
||||
# continue # skip rows where no buy signal or that would immediately sell off
|
||||
#
|
||||
# if realistic:
|
||||
# if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
# continue
|
||||
# if max_open_trades > 0:
|
||||
# # Check if max_open_trades has already been reached for the given date
|
||||
# if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
# continue
|
||||
#
|
||||
# trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
#
|
||||
# trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
||||
# trade_count_lock, args)
|
||||
#
|
||||
#
|
||||
# if trade_entry:
|
||||
# lock_pair_until = trade_entry.close_time
|
||||
# trades.append(trade_entry)
|
||||
# else:
|
||||
# # Set lock_pair_until to end of testing period if trade could not be closed
|
||||
# # This happens only if the buy-signal was with the last candle
|
||||
# lock_pair_until = ticker_data.iloc[-1].date
|
||||
#
|
||||
# return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||
######################## Original BT loop end
|
||||
|
||||
lock_pair_until = None
|
||||
for index, row in enumerate(ticker):
|
||||
if row.buy == 0 or row.sell == 1:
|
||||
continue # skip rows where no buy signal or that would immediately sell off
|
||||
def np_get_t_open_ind(self, np_buy_arr, t_exit_ind: int):
|
||||
import utils_find_1st as utf1st
|
||||
"""
|
||||
The purpose of this def is to return the next "buy" = 1
|
||||
after t_exit_ind.
|
||||
|
||||
if realistic:
|
||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
continue
|
||||
if max_open_trades > 0:
|
||||
# Check if max_open_trades has already been reached for the given date
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
t_exit_ind is the index the last trade exited on
|
||||
or 0 if first time around this loop.
|
||||
"""
|
||||
t_open_ind: int
|
||||
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
# Create a view on our buy index starting after last trade exit
|
||||
# Search for next buy
|
||||
np_buy_arr_v = np_buy_arr[t_exit_ind:]
|
||||
t_open_ind = utf1st.find_1st(np_buy_arr_v, 1, utf1st.cmp_equal)
|
||||
t_open_ind = t_open_ind + t_exit_ind # Align numpy index
|
||||
return t_open_ind
|
||||
|
||||
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
||||
trade_count_lock, args)
|
||||
def backslap_pair(self, ticker_data, pair):
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import timeit
|
||||
import utils_find_1st as utf1st
|
||||
|
||||
if trade_entry:
|
||||
lock_pair_until = trade_entry.close_time
|
||||
trades.append(trade_entry)
|
||||
stop = self.stop_loss_value
|
||||
p_stop = (-stop + 1) # What stop really means, e.g 0.01 is 0.99 of price
|
||||
|
||||
### backslap debug wrap
|
||||
debug_2loops = False # only loop twice, for faster debug
|
||||
debug_timing = False # print timing for each step
|
||||
debug = False # print values, to check accuracy
|
||||
if debug:
|
||||
from pandas import set_option
|
||||
set_option('display.max_rows', 5000)
|
||||
set_option('display.max_columns', 8)
|
||||
pd.set_option('display.width', 1000)
|
||||
pd.set_option('max_colwidth', 40)
|
||||
pd.set_option('precision', 12)
|
||||
|
||||
def s():
|
||||
st = timeit.default_timer()
|
||||
return st
|
||||
|
||||
def f(st):
|
||||
return (timeit.default_timer() - st)
|
||||
#### backslap config
|
||||
"""
|
||||
A couple legacy Pandas vars still used for pretty debug output.
|
||||
If have debug enabled the code uses these fields for dataframe output
|
||||
|
||||
Ensure bto, sto, sco are aligned with Numpy values next
|
||||
to align debug and actual. Options are:
|
||||
buy - open - close - sell - high - low - np_stop_pri
|
||||
"""
|
||||
bto = buys_triggered_on = "close"
|
||||
sto = stops_triggered_on = "low" ## Should be low, FT uses close
|
||||
sco = stops_calculated_on = "np_stop_pri" ## should use np_stop_pri, FT uses close
|
||||
'''
|
||||
Numpy arrays are used for 100x speed up
|
||||
We requires setting Int values for
|
||||
buy stop triggers and stop calculated on
|
||||
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6
|
||||
'''
|
||||
np_buy: int = 0
|
||||
np_open: int = 1
|
||||
np_close: int = 2
|
||||
np_sell: int = 3
|
||||
np_high: int = 4
|
||||
np_low: int = 5
|
||||
np_stop: int = 6
|
||||
np_bto: int = np_close # buys_triggered_on - should be close
|
||||
np_bco: int = np_open # buys calculated on - open of the next candle.
|
||||
np_sto: int = np_low # stops_triggered_on - Should be low, FT uses close
|
||||
np_sco: int = np_stop # stops_calculated_on - Should be stop, FT uses close
|
||||
#
|
||||
### End Config
|
||||
|
||||
pair: str = pair
|
||||
loop: int = 1
|
||||
|
||||
#ticker_data: DataFrame = ticker_dfs[t_file]
|
||||
bslap: DataFrame = ticker_data
|
||||
|
||||
# Build a single dimension numpy array from "buy" index for faster search
|
||||
# (500x faster than pandas)
|
||||
np_buy_arr = bslap['buy'].values
|
||||
np_buy_arr_len: int = len(np_buy_arr)
|
||||
|
||||
# use numpy array for faster searches in loop, 20x faster than pandas
|
||||
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
|
||||
np_bslap = np.array(bslap[['buy', 'open', 'close', 'sell', 'high', 'low']])
|
||||
|
||||
loop: int = 0 # how many time around the loop
|
||||
t_exit_ind = 0 # Start loop from first index
|
||||
t_exit_last = 0 # To test for exit
|
||||
|
||||
st = s() # Start timer for processing dataframe
|
||||
if debug:
|
||||
print('Processing:', pair)
|
||||
|
||||
# Results will be stored in a list of dicts
|
||||
bslap_pair_results: list = []
|
||||
bslap_result: dict = {}
|
||||
|
||||
while t_exit_ind < np_buy_arr_len:
|
||||
loop = loop + 1
|
||||
if debug or debug_timing:
|
||||
print("----------------------------------------------------------- Loop", loop, pair)
|
||||
if debug_2loops:
|
||||
if loop == 4:
|
||||
break
|
||||
'''
|
||||
Dev phases
|
||||
Phase 1
|
||||
1) Manage buy, sell, stop enter/exit
|
||||
a) Find first buy index
|
||||
b) Discover first stop and sell hit after buy index
|
||||
c) Chose first intance as trade exit
|
||||
|
||||
Phase 2
|
||||
2) Manage dynamic Stop and ROI Exit
|
||||
a) Create trade slice from 1
|
||||
b) search within trade slice for dynamice stop hit
|
||||
c) search within trade slice for ROI hit
|
||||
'''
|
||||
|
||||
'''
|
||||
Finds index for first buy = 1 flag, use .values numpy array for speed
|
||||
|
||||
Create a slice, from first buy index onwards.
|
||||
Slice will be used to find exit conditions after trade open
|
||||
'''
|
||||
if debug_timing:
|
||||
st = s()
|
||||
|
||||
t_open_ind = self.np_get_t_open_ind(np_buy_arr, t_exit_ind)
|
||||
|
||||
if debug_timing:
|
||||
t_t = f(st)
|
||||
print("0-numpy", str.format('{0:.17f}', t_t))
|
||||
st = s()
|
||||
|
||||
'''
|
||||
Calculate np_t_stop_pri (Trade Stop Price) based on the buy price
|
||||
|
||||
As stop in based on buy price we are interested in buy
|
||||
- Buys are Triggered On np_bto, typically the CLOSE of candle
|
||||
- Buys are Calculated On np_bco, default is OPEN of the next candle.
|
||||
as we only see the CLOSE after it has happened.
|
||||
The assumption is we have bought at first available price, the OPEN
|
||||
'''
|
||||
np_t_stop_pri = (np_bslap[t_open_ind + 1, np_bco] * p_stop)
|
||||
|
||||
if debug_timing:
|
||||
t_t = f(st)
|
||||
print("1-numpy", str.format('{0:.17f}', t_t))
|
||||
st = s()
|
||||
|
||||
"""
|
||||
1)Create a View from our open trade forward
|
||||
|
||||
The view is our search space for the next Stop or Sell
|
||||
We use a numpy view:
|
||||
Using a numpy for speed on views, 1,000 faster than pandas
|
||||
Pandas cannot assure it will always return a view, copies are
|
||||
3 orders of magnitude slower
|
||||
|
||||
The view contains columns:
|
||||
buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
|
||||
"""
|
||||
np_t_open_v = np_bslap[t_open_ind:]
|
||||
|
||||
if debug_timing:
|
||||
t_t = f(st)
|
||||
print("2-numpy", str.format('{0:.17f}', t_t))
|
||||
st = s()
|
||||
|
||||
'''
|
||||
Find first stop index after Trade Open:
|
||||
|
||||
First index in np_t_open_v (numpy view of bslap dataframe)
|
||||
Using a numpy view a orders of magnitude faster
|
||||
|
||||
where [np_sto] (stop tiggered on variable: "close", "low" etc) < np_t_stop_pri
|
||||
'''
|
||||
np_t_stop_ind = utf1st.find_1st(np_t_open_v[:, np_sto],
|
||||
np_t_stop_pri,
|
||||
utf1st.cmp_smaller) \
|
||||
+ t_open_ind
|
||||
|
||||
if debug_timing:
|
||||
t_t = f(st)
|
||||
print("3-numpy", str.format('{0:.17f}', t_t))
|
||||
st = s()
|
||||
|
||||
'''
|
||||
Find first sell index after trade open
|
||||
|
||||
First index in t_open_slice where ['sell'] = 1
|
||||
'''
|
||||
# Use numpy array for faster search for sell
|
||||
# Sell uses column 3.
|
||||
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
|
||||
# Numpy searches 25-35x quicker than pandas on this data
|
||||
|
||||
np_t_sell_ind = utf1st.find_1st(np_t_open_v[:, np_sell],
|
||||
1, utf1st.cmp_equal) \
|
||||
+ t_open_ind
|
||||
|
||||
if debug_timing:
|
||||
t_t = f(st)
|
||||
print("4-numpy", str.format('{0:.17f}', t_t))
|
||||
st = s()
|
||||
|
||||
'''
|
||||
Determine which was hit first stop or sell, use as exit
|
||||
|
||||
STOP takes priority over SELL as would be 'in candle' from tick data
|
||||
Sell would use Open from Next candle.
|
||||
So in a draw Stop would be hit first on ticker data in live
|
||||
'''
|
||||
if np_t_stop_ind <= np_t_sell_ind:
|
||||
t_exit_ind = np_t_stop_ind # Set Exit row index
|
||||
t_exit_type = 'stop' # Set Exit type (sell|stop)
|
||||
np_t_exit_pri = np_sco # The price field our STOP exit will use
|
||||
else:
|
||||
# move sell onto next candle, we only look back on sell
|
||||
# will use the open price later.
|
||||
t_exit_ind = np_t_sell_ind # Set Exit row index
|
||||
t_exit_type = 'sell' # Set Exit type (sell|stop)
|
||||
np_t_exit_pri = np_open # The price field our SELL exit will use
|
||||
|
||||
if debug_timing:
|
||||
t_t = f(st)
|
||||
print("5-logic", str.format('{0:.17f}', t_t))
|
||||
st = s()
|
||||
|
||||
if debug:
|
||||
'''
|
||||
Print out the buys, stops, sells
|
||||
Include Line before and after to for easy
|
||||
Human verification
|
||||
'''
|
||||
# Combine the np_t_stop_pri value to bslap dataframe to make debug
|
||||
# life easy. This is the currenct stop price based on buy price_
|
||||
# Don't care about performance in debug
|
||||
# (add an extra column if printing as df has date in col1 not in npy)
|
||||
bslap['np_stop_pri'] = np_t_stop_pri
|
||||
|
||||
# Buy
|
||||
print("=================== BUY ", pair)
|
||||
print("Numpy Array BUY Index is:", t_open_ind)
|
||||
print("DataFrame BUY Index is:", t_open_ind + 1, "displaying DF \n")
|
||||
print("HINT, BUY trade should use OPEN price from next candle, i.e ", t_open_ind + 2, "\n")
|
||||
op_is = t_open_ind - 1 # Print open index start, line before
|
||||
op_if = t_open_ind + 3 # Print open index finish, line after
|
||||
print(bslap.iloc[op_is:op_if], "\n")
|
||||
print(bslap.iloc[t_open_ind + 1]['date'])
|
||||
|
||||
# Stop - Stops trigger price sto, and price received sco. (Stop Trigger|Calculated On)
|
||||
print("=================== STOP ", pair)
|
||||
print("Numpy Array STOP Index is:", np_t_stop_ind)
|
||||
print("DataFrame STOP Index is:", np_t_stop_ind + 1, "displaying DF \n")
|
||||
print("First Stop Index after Trade open in candle", np_t_stop_ind + 1, ": \n",
|
||||
str.format('{0:.17f}', bslap.iloc[np_t_stop_ind][sto]),
|
||||
"is less than", str.format('{0:.17f}', np_t_stop_pri))
|
||||
print("Tokens will be sold at rate:", str.format('{0:.17f}', bslap.iloc[np_t_stop_ind][sco]))
|
||||
print("HINT, STOPs should close in-candle, i.e", np_t_stop_ind + 1,
|
||||
": As live STOPs are not linked to O-C times")
|
||||
|
||||
st_is = np_t_stop_ind - 1 # Print stop index start, line before
|
||||
st_if = np_t_stop_ind + 2 # Print stop index finish, line after
|
||||
print(bslap.iloc[st_is:st_if], "\n")
|
||||
|
||||
# Sell
|
||||
print("=================== SELL ", pair)
|
||||
print("Numpy Array SELL Index is:", np_t_sell_ind)
|
||||
print("DataFrame SELL Index is:", np_t_sell_ind + 1, "displaying DF \n")
|
||||
print("First Sell Index after Trade open in in candle", np_t_sell_ind + 1)
|
||||
print("HINT, if exit is SELL (not stop) trade should use OPEN price from next candle",
|
||||
np_t_sell_ind + 2, "\n")
|
||||
sl_is = np_t_sell_ind - 1 # Print sell index start, line before
|
||||
sl_if = np_t_sell_ind + 3 # Print sell index finish, line after
|
||||
print(bslap.iloc[sl_is:sl_if], "\n")
|
||||
|
||||
# Chosen Exit (stop or sell)
|
||||
print("=================== EXIT ", pair)
|
||||
print("Exit type is :", t_exit_type)
|
||||
# print((bslap.iloc[t_exit_ind], "\n"))
|
||||
print("trade exit price field is", np_t_exit_pri, "\n")
|
||||
|
||||
'''
|
||||
Trade entry is always the next candles "open" price
|
||||
We trigger on close, so cannot see that till after
|
||||
its closed.
|
||||
|
||||
The exception to this is a STOP which is calculated in candle
|
||||
'''
|
||||
if debug_timing:
|
||||
t_t = f(st)
|
||||
print("6-depra", str.format('{0:.17f}', t_t))
|
||||
st = s()
|
||||
|
||||
## use numpy view "np_t_open_v" for speed. Columns are
|
||||
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
|
||||
# exception is 6 which is use the stop value.
|
||||
|
||||
np_trade_enter_price = np_bslap[t_open_ind + 1, np_open]
|
||||
if t_exit_type == 'stop':
|
||||
if np_t_exit_pri == 6:
|
||||
np_trade_exit_price = np_t_stop_pri
|
||||
else:
|
||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||
# This happens only if the buy-signal was with the last candle
|
||||
lock_pair_until = ticker_data.iloc[-1].date
|
||||
np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri]
|
||||
if t_exit_type == 'sell':
|
||||
np_trade_exit_price = np_bslap[t_exit_ind + 1, np_t_exit_pri]
|
||||
|
||||
if debug_timing:
|
||||
t_t = f(st)
|
||||
print("7-numpy", str.format('{0:.17f}', t_t))
|
||||
st = s()
|
||||
|
||||
if debug:
|
||||
print("//////////////////////////////////////////////")
|
||||
print("+++++++++++++++++++++++++++++++++ Trade Enter ")
|
||||
print("np_trade Enterprice is ", str.format('{0:.17f}', np_trade_enter_price))
|
||||
print("--------------------------------- Trade Exit ")
|
||||
print("Trade Exit Type is ", t_exit_type)
|
||||
print("np_trade Exit Price is", str.format('{0:.17f}', np_trade_exit_price))
|
||||
print("//////////////////////////////////////////////")
|
||||
|
||||
# Loop control - catch no closed trades.
|
||||
if debug:
|
||||
print("---------------------------------------- end of loop", loop - 1,
|
||||
" Dataframe Exit Index is: ", t_exit_ind)
|
||||
print("Exit Index Last, Exit Index Now Are: ", t_exit_last, t_exit_ind)
|
||||
|
||||
if t_exit_last >= t_exit_ind:
|
||||
"""
|
||||
When last trade exit equals index of last exit, there is no
|
||||
opportunity to close any more trades.
|
||||
|
||||
Break loop and go on to next pair.
|
||||
|
||||
TODO
|
||||
add handing here to record none closed open trades
|
||||
"""
|
||||
|
||||
if debug:
|
||||
print(bslap_pair_results)
|
||||
|
||||
break
|
||||
else:
|
||||
"""
|
||||
Add trade to backtest looking results list of dicts
|
||||
Loop back to look for more trades.
|
||||
"""
|
||||
# Index will change if incandle stop or look back as close Open and Sell
|
||||
if t_exit_type == 'stop':
|
||||
close_index: int = t_exit_ind + 1
|
||||
elif t_exit_type == 'sell':
|
||||
close_index: int = t_exit_ind + 2
|
||||
else:
|
||||
close_index: int = t_exit_ind + 1
|
||||
# Munge the date / delta
|
||||
start_date: str = bslap.iloc[t_open_ind + 1]['date']
|
||||
end_date: str = bslap.iloc[close_index]['date']
|
||||
|
||||
def __datetime(date_str):
|
||||
return datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S+00:00')
|
||||
|
||||
# trade_start = __datetime(start_date)
|
||||
# trade_end = __datetime(end_date)
|
||||
# trade_mins = (trade_end - trade_start).total_seconds() / 60
|
||||
# build trade dictionary
|
||||
bslap_result["pair"] = pair
|
||||
bslap_result["profit_percent"] = ( np_trade_exit_price - np_trade_enter_price) // np_trade_enter_price * 100
|
||||
bslap_result["profit_abs"] = ""
|
||||
bslap_result["open_time"] = start_date
|
||||
bslap_result["close_time"] = end_date
|
||||
bslap_result["open_index"] = t_open_ind + 1
|
||||
bslap_result["close_index"] = close_index
|
||||
# bslap_result["trade_duration"] = trade_mins
|
||||
bslap_result["open_at_end"] = False
|
||||
bslap_result["open_rate"] = str.format('{0:.10f}', np_trade_enter_price)
|
||||
bslap_result["close_rate"] = str.format('{0:.10f}', np_trade_exit_price)
|
||||
bslap_result["exit_type"] = t_exit_type
|
||||
# Add trade dictionary to list
|
||||
bslap_pair_results.append(bslap_result)
|
||||
if debug:
|
||||
print(bslap_pair_results)
|
||||
|
||||
"""
|
||||
Loop back to start. t_exit_last becomes where loop
|
||||
will seek to open new trades from.
|
||||
Push index on 1 to not open on close
|
||||
"""
|
||||
t_exit_last = t_exit_ind + 1
|
||||
|
||||
if debug_timing:
|
||||
t_t = f(st)
|
||||
print("8", str.format('{0:.17f}', t_t))
|
||||
|
||||
# Send back List of trade dicts
|
||||
return bslap_pair_results
|
||||
|
||||
|
||||
|
||||
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue
Block a user