diff --git a/freqtrade/freqai/base_models/BasePyTorchRegressor.py b/freqtrade/freqai/base_models/BasePyTorchRegressor.py index 9b429db23..5f53e7d07 100644 --- a/freqtrade/freqai/base_models/BasePyTorchRegressor.py +++ b/freqtrade/freqai/base_models/BasePyTorchRegressor.py @@ -86,9 +86,6 @@ class BasePyTorchRegressor(BasePyTorchModel): dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count) dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count) - dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"]) - dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"]) - (dd["train_features"], dd["train_labels"], dd["train_weights"]) = ( dk.feature_pipeline.fit_transform( dd["train_features"], dd["train_labels"], dd["train_weights"] diff --git a/freqtrade/freqai/prediction_models/PyTorchTransformerRegressor.py b/freqtrade/freqai/prediction_models/PyTorchTransformerRegressor.py index 27b7de832..2d60d68cf 100644 --- a/freqtrade/freqai/prediction_models/PyTorchTransformerRegressor.py +++ b/freqtrade/freqai/prediction_models/PyTorchTransformerRegressor.py @@ -141,7 +141,7 @@ class PyTorchTransformerRegressor(BasePyTorchRegressor): pred_df = pd.DataFrame(yb.detach().numpy(), columns=dk.label_list) pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df) - if self.freqai_info.get("DI_threshold", 0) > 0: + if self.ft_params.get("DI_threshold", 0) > 0: dk.DI_values = dk.feature_pipeline["di"].di_values else: dk.DI_values = np.zeros(outliers.shape[0])