mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
Move validate_backtest_data and get_timeframe to histoyr
This commit is contained in:
parent
b7686d06a7
commit
9225cdea8a
|
@ -5,19 +5,21 @@ Includes:
|
||||||
* load data for a pair (or a list of pairs) from disk
|
* load data for a pair (or a list of pairs) from disk
|
||||||
* download data from exchange and store to disk
|
* download data from exchange and store to disk
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
|
import operator
|
||||||
|
from datetime import datetime
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional, List, Dict, Tuple, Any
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
import arrow
|
import arrow
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade import misc, OperationalException
|
from freqtrade import OperationalException, misc
|
||||||
from freqtrade.arguments import TimeRange
|
from freqtrade.arguments import TimeRange
|
||||||
from freqtrade.data.converter import parse_ticker_dataframe
|
from freqtrade.data.converter import parse_ticker_dataframe
|
||||||
from freqtrade.exchange import Exchange, timeframe_to_minutes
|
from freqtrade.exchange import Exchange, timeframe_to_minutes
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@ -243,3 +245,39 @@ def download_pair_history(datadir: Optional[Path],
|
||||||
f'Error: {e}'
|
f'Error: {e}'
|
||||||
)
|
)
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||||
|
"""
|
||||||
|
Get the maximum timeframe for the given backtest data
|
||||||
|
:param data: dictionary with preprocessed backtesting data
|
||||||
|
:return: tuple containing min_date, max_date
|
||||||
|
"""
|
||||||
|
timeframe = [
|
||||||
|
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
|
||||||
|
for frame in data.values()
|
||||||
|
]
|
||||||
|
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||||
|
max(timeframe, key=operator.itemgetter(1))[1]
|
||||||
|
|
||||||
|
|
||||||
|
def validate_backtest_data(data: Dict[str, DataFrame], min_date: datetime,
|
||||||
|
max_date: datetime, ticker_interval_mins: int) -> bool:
|
||||||
|
"""
|
||||||
|
Validates preprocessed backtesting data for missing values and shows warnings about it that.
|
||||||
|
|
||||||
|
:param data: dictionary with preprocessed backtesting data
|
||||||
|
:param min_date: start-date of the data
|
||||||
|
:param max_date: end-date of the data
|
||||||
|
:param ticker_interval_mins: ticker interval in minutes
|
||||||
|
"""
|
||||||
|
# total difference in minutes / interval-minutes
|
||||||
|
expected_frames = int((max_date - min_date).total_seconds() // 60 // ticker_interval_mins)
|
||||||
|
found_missing = False
|
||||||
|
for pair, df in data.items():
|
||||||
|
dflen = len(df)
|
||||||
|
if dflen < expected_frames:
|
||||||
|
found_missing = True
|
||||||
|
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
|
||||||
|
pair, expected_frames, dflen, expected_frames - dflen)
|
||||||
|
return found_missing
|
||||||
|
|
|
@ -13,7 +13,6 @@ from freqtrade import constants, OperationalException
|
||||||
from freqtrade.arguments import Arguments
|
from freqtrade.arguments import Arguments
|
||||||
from freqtrade.arguments import TimeRange
|
from freqtrade.arguments import TimeRange
|
||||||
from freqtrade.data import history
|
from freqtrade.data import history
|
||||||
from freqtrade.optimize import get_timeframe
|
|
||||||
from freqtrade.strategy.interface import SellType
|
from freqtrade.strategy.interface import SellType
|
||||||
|
|
||||||
|
|
||||||
|
@ -49,7 +48,6 @@ class Edge():
|
||||||
self.strategy = strategy
|
self.strategy = strategy
|
||||||
self.ticker_interval = self.strategy.ticker_interval
|
self.ticker_interval = self.strategy.ticker_interval
|
||||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||||
self.get_timeframe = get_timeframe
|
|
||||||
self.advise_sell = self.strategy.advise_sell
|
self.advise_sell = self.strategy.advise_sell
|
||||||
self.advise_buy = self.strategy.advise_buy
|
self.advise_buy = self.strategy.advise_buy
|
||||||
|
|
||||||
|
@ -117,7 +115,7 @@ class Edge():
|
||||||
preprocessed = self.tickerdata_to_dataframe(data)
|
preprocessed = self.tickerdata_to_dataframe(data)
|
||||||
|
|
||||||
# Print timeframe
|
# Print timeframe
|
||||||
min_date, max_date = self.get_timeframe(preprocessed)
|
min_date, max_date = history.get_timeframe(preprocessed)
|
||||||
logger.info(
|
logger.info(
|
||||||
'Measuring data from %s up to %s (%s days) ...',
|
'Measuring data from %s up to %s (%s days) ...',
|
||||||
min_date.isoformat(),
|
min_date.isoformat(),
|
||||||
|
|
|
@ -1,49 +1 @@
|
||||||
# pragma pylint: disable=missing-docstring
|
|
||||||
|
|
||||||
import logging
|
|
||||||
from datetime import datetime
|
|
||||||
from typing import Dict, Tuple
|
|
||||||
import operator
|
|
||||||
|
|
||||||
import arrow
|
|
||||||
from pandas import DataFrame
|
|
||||||
|
|
||||||
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts # noqa: F401
|
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts # noqa: F401
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
|
||||||
"""
|
|
||||||
Get the maximum timeframe for the given backtest data
|
|
||||||
:param data: dictionary with preprocessed backtesting data
|
|
||||||
:return: tuple containing min_date, max_date
|
|
||||||
"""
|
|
||||||
timeframe = [
|
|
||||||
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
|
|
||||||
for frame in data.values()
|
|
||||||
]
|
|
||||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
|
||||||
max(timeframe, key=operator.itemgetter(1))[1]
|
|
||||||
|
|
||||||
|
|
||||||
def validate_backtest_data(data: Dict[str, DataFrame], min_date: datetime,
|
|
||||||
max_date: datetime, ticker_interval_mins: int) -> bool:
|
|
||||||
"""
|
|
||||||
Validates preprocessed backtesting data for missing values and shows warnings about it that.
|
|
||||||
|
|
||||||
:param data: dictionary with preprocessed backtesting data
|
|
||||||
:param min_date: start-date of the data
|
|
||||||
:param max_date: end-date of the data
|
|
||||||
:param ticker_interval_mins: ticker interval in minutes
|
|
||||||
"""
|
|
||||||
# total difference in minutes / interval-minutes
|
|
||||||
expected_frames = int((max_date - min_date).total_seconds() // 60 // ticker_interval_mins)
|
|
||||||
found_missing = False
|
|
||||||
for pair, df in data.items():
|
|
||||||
dflen = len(df)
|
|
||||||
if dflen < expected_frames:
|
|
||||||
found_missing = True
|
|
||||||
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
|
|
||||||
pair, expected_frames, dflen, expected_frames - dflen)
|
|
||||||
return found_missing
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user