mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
separate RL install from general FAI install, update docs
This commit is contained in:
parent
9c73411ac2
commit
936ca24482
|
@ -1,5 +1,8 @@
|
||||||
# Reinforcement Learning
|
# Reinforcement Learning
|
||||||
|
|
||||||
|
!!! Note
|
||||||
|
Reinforcement learning dependencies include large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl (~700mb additional space required) [y/N]?" Users who prefer docker should ensure they use the docker image appended with `_freqaiRL`.
|
||||||
|
|
||||||
Setting up and running a Reinforcement Learning model is the same as running a Regressor or Classifier. The same two flags, `--freqaimodel` and `--strategy`, must be defined on the command line:
|
Setting up and running a Reinforcement Learning model is the same as running a Regressor or Classifier. The same two flags, `--freqaimodel` and `--strategy`, must be defined on the command line:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
@ -143,7 +146,7 @@ As users begin to modify the strategy and the prediction model, they will quickl
|
||||||
if not self._is_valid(action):
|
if not self._is_valid(action):
|
||||||
return -2
|
return -2
|
||||||
pnl = self.get_unrealized_profit()
|
pnl = self.get_unrealized_profit()
|
||||||
rew = np.sign(pnl) * (pnl + 1)
|
|
||||||
factor = 100
|
factor = 100
|
||||||
# reward agent for entering trades
|
# reward agent for entering trades
|
||||||
if action in (Actions.Long_enter.value, Actions.Short_enter.value) \
|
if action in (Actions.Long_enter.value, Actions.Short_enter.value) \
|
||||||
|
@ -166,12 +169,12 @@ As users begin to modify the strategy and the prediction model, they will quickl
|
||||||
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
||||||
if pnl > self.profit_aim * self.rr:
|
if pnl > self.profit_aim * self.rr:
|
||||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||||
return float(rew * factor)
|
return float(pnl * factor)
|
||||||
# close short
|
# close short
|
||||||
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
||||||
if pnl > self.profit_aim * self.rr:
|
if pnl > self.profit_aim * self.rr:
|
||||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||||
return float(rew * factor)
|
return float(pnl * factor)
|
||||||
return 0.
|
return 0.
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -194,6 +197,6 @@ cd freqtrade
|
||||||
tensorboard --logdir user_data/models/unique-id
|
tensorboard --logdir user_data/models/unique-id
|
||||||
```
|
```
|
||||||
|
|
||||||
where `unique-id` is the `identifier` set in the `freqai` configuration file.
|
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell if the user wishes to view the output in their browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).
|
||||||
|
|
||||||
![tensorboard](assets/tensorboard.png)
|
![tensorboard](assets/tensorboard.png)
|
||||||
|
|
|
@ -2,7 +2,6 @@ import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict
|
from typing import Any, Dict
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch as th
|
import torch as th
|
||||||
|
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
@ -81,7 +80,6 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
||||||
return -2
|
return -2
|
||||||
|
|
||||||
pnl = self.get_unrealized_profit()
|
pnl = self.get_unrealized_profit()
|
||||||
rew = np.sign(pnl) * (pnl + 1)
|
|
||||||
factor = 100
|
factor = 100
|
||||||
|
|
||||||
# reward agent for entering trades
|
# reward agent for entering trades
|
||||||
|
@ -109,12 +107,12 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
||||||
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
||||||
if pnl > self.profit_aim * self.rr:
|
if pnl > self.profit_aim * self.rr:
|
||||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||||
return float(rew * factor)
|
return float(pnl * factor)
|
||||||
|
|
||||||
# close short
|
# close short
|
||||||
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
||||||
if pnl > self.profit_aim * self.rr:
|
if pnl > self.profit_aim * self.rr:
|
||||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||||
return float(rew * factor)
|
return float(pnl * factor)
|
||||||
|
|
||||||
return 0.
|
return 0.
|
||||||
|
|
8
requirements-freqai-rl.txt
Normal file
8
requirements-freqai-rl.txt
Normal file
|
@ -0,0 +1,8 @@
|
||||||
|
# Include all requirements to run the bot.
|
||||||
|
-r requirements-freqai.txt
|
||||||
|
|
||||||
|
# Required for freqai-rl
|
||||||
|
torch==1.12.1
|
||||||
|
stable-baselines3==1.6.1
|
||||||
|
gym==0.26.2
|
||||||
|
sb3-contrib==1.6.1
|
|
@ -1,5 +1,5 @@
|
||||||
# Include all requirements to run the bot.
|
# Include all requirements to run the bot.
|
||||||
-r requirements-hyperopt.txt
|
-r requirements.txt
|
||||||
|
|
||||||
# Required for freqai
|
# Required for freqai
|
||||||
scikit-learn==1.1.2
|
scikit-learn==1.1.2
|
||||||
|
@ -8,8 +8,6 @@ catboost==1.1; platform_machine != 'aarch64'
|
||||||
lightgbm==3.3.2
|
lightgbm==3.3.2
|
||||||
xgboost==1.6.2
|
xgboost==1.6.2
|
||||||
torch==1.12.1
|
torch==1.12.1
|
||||||
stable-baselines3==1.6.0
|
stable-baselines3==1.6.1
|
||||||
gym==0.21.0
|
gym==0.26.2
|
||||||
tensorboard==2.9.1
|
sb3-contrib==1.6.1
|
||||||
optuna==2.10.1
|
|
||||||
sb3-contrib==1.6.0
|
|
||||||
|
|
9
setup.sh
9
setup.sh
|
@ -78,14 +78,21 @@ function updateenv() {
|
||||||
fi
|
fi
|
||||||
|
|
||||||
REQUIREMENTS_FREQAI=""
|
REQUIREMENTS_FREQAI=""
|
||||||
|
REQUIREMENTS_FREQAI_RL=""
|
||||||
read -p "Do you want to install dependencies for freqai [y/N]? "
|
read -p "Do you want to install dependencies for freqai [y/N]? "
|
||||||
dev=$REPLY
|
dev=$REPLY
|
||||||
if [[ $REPLY =~ ^[Yy]$ ]]
|
if [[ $REPLY =~ ^[Yy]$ ]]
|
||||||
then
|
then
|
||||||
REQUIREMENTS_FREQAI="-r requirements-freqai.txt"
|
REQUIREMENTS_FREQAI="-r requirements-freqai.txt"
|
||||||
|
read -p "Do you also want dependencies for freqai-rl (~700mb additional space required) [y/N]? "
|
||||||
|
dev=$REPLY
|
||||||
|
if [[ $REPLY =~ ^[Yy]$ ]]
|
||||||
|
then
|
||||||
|
REQUIREMENTS_FREQAI="-r requirements-freqai-rl.txt"
|
||||||
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
${PYTHON} -m pip install --upgrade -r ${REQUIREMENTS} ${REQUIREMENTS_HYPEROPT} ${REQUIREMENTS_PLOT} ${REQUIREMENTS_FREQAI}
|
${PYTHON} -m pip install --upgrade -r ${REQUIREMENTS} ${REQUIREMENTS_HYPEROPT} ${REQUIREMENTS_PLOT} ${REQUIREMENTS_FREQAI} ${REQUIREMENTS_FREQAI_RL}
|
||||||
if [ $? -ne 0 ]; then
|
if [ $? -ne 0 ]; then
|
||||||
echo "Failed installing dependencies"
|
echo "Failed installing dependencies"
|
||||||
exit 1
|
exit 1
|
||||||
|
|
|
@ -8,7 +8,6 @@ import pytest
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
from freqtrade.data.dataprovider import DataProvider
|
from freqtrade.data.dataprovider import DataProvider
|
||||||
from freqtrade.enums import RunMode
|
from freqtrade.enums import RunMode
|
||||||
from freqtrade.enums import RunMode
|
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
from freqtrade.freqai.utils import download_all_data_for_training, get_required_data_timerange
|
from freqtrade.freqai.utils import download_all_data_for_training, get_required_data_timerange
|
||||||
from freqtrade.optimize.backtesting import Backtesting
|
from freqtrade.optimize.backtesting import Backtesting
|
||||||
|
|
Loading…
Reference in New Issue
Block a user