mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
give user ability to analyze live trade dataframe inside custom prediction model. Add documentation to explain new functionality
This commit is contained in:
parent
895ebbfd18
commit
95d3009a95
|
@ -619,6 +619,46 @@ If the user sets this value, FreqAI will initially use the predictions from the
|
|||
and then subsequently begin introducing real prediction data as it is generated. FreqAI will save
|
||||
this historical data to be reloaded if the user stops and restarts with the same `identifier`.
|
||||
|
||||
## Extra returns per train
|
||||
|
||||
Users may find that there are some important metrics that they'd like to return to the strategy at the end of each retrain.
|
||||
Users can include these metrics by assigining them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside their custom prediction
|
||||
model class. FreqAI takes the `my_new_value` assigned in this dictionary and expands it to fit the return dataframe to the strategy.
|
||||
The user can then use the value in the strategy with `dataframe['my_new_value']`. An example of how this is already used in FreqAI is
|
||||
the `&*_mean` and `&*_std` values, which indicate the mean and standard deviation of that particular label during the most recent training.
|
||||
Another example is shown below if the user wants to use live metrics from the trade databse.
|
||||
|
||||
The user needs to set the standard dictionary in the config so FreqAI can return proper dataframe shapes:
|
||||
|
||||
```json
|
||||
"freqai": {
|
||||
"extra_returns_per_train": {"total_profit": 4}
|
||||
}
|
||||
```
|
||||
|
||||
These values will likely be overridden by the user prediction model, but in the case where the user model has yet to set them, or needs
|
||||
a default initial value - this is the value that will be returned.
|
||||
|
||||
## Analyzing the trade live database
|
||||
|
||||
Users can analyze the live trade database by calling `analyze_trade_database()` in their custom prediction model. FreqAI already has the
|
||||
database setup in a pandas dataframe and ready to be analyzed. Here is an example usecase:
|
||||
|
||||
```python
|
||||
def analyze_trade_database(self, dk: FreqaiDataKitchen, pair: str) -> None:
|
||||
"""
|
||||
User analyzes the trade database here and returns summary stats which will be passed back
|
||||
to the strategy for reinforcement learning or for additional adaptive metrics for use
|
||||
in entry/exit signals. Store these metrics in dk.data['extra_returns_per_train'] and
|
||||
they will format themselves into the dataframe as an additional column in the user
|
||||
strategy. User has access to the current trade database in dk.trade_database_df.
|
||||
"""
|
||||
total_profit = dk.trade_database_df['close_profit_abs'].sum()
|
||||
dk.data['extra_returns_per_train']['total_profit'] = total_profit
|
||||
|
||||
return
|
||||
```
|
||||
|
||||
<!-- ## Dynamic target expectation
|
||||
|
||||
The labels used for model training have a unique statistical distribution for each separate model training.
|
||||
|
|
|
@ -39,7 +39,7 @@ class FreqaiDataDrawer:
|
|||
Robert Caulk @robcaulk
|
||||
|
||||
Theoretical brainstorming:
|
||||
Elin Törnquist @thorntwig
|
||||
Elin Törnquist @th0rntwig
|
||||
|
||||
Code review, software architecture brainstorming:
|
||||
@xmatthias
|
||||
|
@ -238,6 +238,11 @@ class FreqaiDataDrawer:
|
|||
|
||||
mrv_df["do_predict"] = do_preds
|
||||
|
||||
if dk.data['extra_returns_per_train']:
|
||||
rets = dk.data['extra_returns_per_train']
|
||||
for return_str in rets:
|
||||
mrv_df[return_str] = rets[return_str]
|
||||
|
||||
# for keras type models, the conv_window needs to be prepended so
|
||||
# viewing is correct in frequi
|
||||
if self.freqai_info.get('keras', False):
|
||||
|
@ -282,9 +287,15 @@ class FreqaiDataDrawer:
|
|||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||
df["DI_values"].iloc[-1] = dk.DI_values[-1]
|
||||
|
||||
if dk.data['extra_returns_per_train']:
|
||||
rets = dk.data['extra_returns_per_train']
|
||||
for return_str in rets:
|
||||
df[return_str].iloc[-1] = rets[return_str]
|
||||
|
||||
# append the new predictions to persistent storage
|
||||
if pair in self.historic_predictions:
|
||||
self.historic_predictions[pair].iloc[-1] = df[label].iloc[-1]
|
||||
for key in df.keys():
|
||||
self.historic_predictions[pair][key].iloc[-1] = df[key].iloc[-1]
|
||||
|
||||
if length_difference < 0:
|
||||
prepend_df = pd.DataFrame(
|
||||
|
@ -320,7 +331,12 @@ class FreqaiDataDrawer:
|
|||
dataframe["do_predict"] = 0
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||
dataframe["DI_value"] = 0
|
||||
dataframe["DI_values"] = 0
|
||||
|
||||
if dk.data['extra_returns_per_train']:
|
||||
rets = dk.data['extra_returns_per_train']
|
||||
for return_str in rets:
|
||||
dataframe[return_str] = 0
|
||||
|
||||
dk.return_dataframe = dataframe
|
||||
|
||||
|
|
|
@ -2,6 +2,7 @@ import copy
|
|||
import datetime
|
||||
import logging
|
||||
import shutil
|
||||
import sqlite3
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
|
@ -39,7 +40,7 @@ class FreqaiDataKitchen:
|
|||
Robert Caulk @robcaulk
|
||||
|
||||
Theoretical brainstorming:
|
||||
Elin Törnquist @thorntwig
|
||||
Elin Törnquist @th0rntwig
|
||||
|
||||
Code review, software architecture brainstorming:
|
||||
@xmatthias
|
||||
|
@ -84,6 +85,12 @@ class FreqaiDataKitchen:
|
|||
config["freqai"]["backtest_period_days"],
|
||||
)
|
||||
|
||||
db_url = self.config.get('db_url', None)
|
||||
self.database_path = '' if db_url == 'sqlite://' else str(db_url).split('///')[1]
|
||||
self.trade_database_df: DataFrame = pd.DataFrame()
|
||||
|
||||
self.data['extra_returns_per_train'] = self.freqai_config.get('extra_returns_per_train', {})
|
||||
|
||||
def set_paths(
|
||||
self,
|
||||
pair: str,
|
||||
|
@ -101,7 +108,7 @@ class FreqaiDataKitchen:
|
|||
|
||||
self.data_path = Path(
|
||||
self.full_path
|
||||
/ str("sub-train" + "-" + pair.split("/")[0] + "_" + str(trained_timestamp))
|
||||
/ f"sub-train-{pair.split('/')[0]}_{trained_timestamp}"
|
||||
)
|
||||
|
||||
return
|
||||
|
@ -328,7 +335,7 @@ class FreqaiDataKitchen:
|
|||
"""
|
||||
|
||||
for label in self.label_list:
|
||||
if df[label].dtype == str:
|
||||
if df[label].dtype == object:
|
||||
continue
|
||||
df[label] = (
|
||||
(df[label] + 1)
|
||||
|
@ -493,7 +500,6 @@ class FreqaiDataKitchen:
|
|||
tc = self.freqai_config.get("model_training_parameters", {}).get("thread_count", -1)
|
||||
pairwise = pairwise_distances(self.data_dictionary["train_features"], n_jobs=tc)
|
||||
avg_mean_dist = pairwise.mean(axis=1).mean()
|
||||
logger.info(f"avg_mean_dist {avg_mean_dist:.2f}")
|
||||
|
||||
return avg_mean_dist
|
||||
|
||||
|
@ -599,10 +605,11 @@ class FreqaiDataKitchen:
|
|||
from the training data set.
|
||||
"""
|
||||
|
||||
tc = self.freqai_config.get("model_training_parameters", {}).get("thread_count", -1)
|
||||
distance = pairwise_distances(
|
||||
self.data_dictionary["train_features"],
|
||||
self.data_dictionary["prediction_features"],
|
||||
n_jobs=-1,
|
||||
n_jobs=tc,
|
||||
)
|
||||
|
||||
self.DI_values = distance.min(axis=0) / self.data["avg_mean_dist"]
|
||||
|
@ -946,6 +953,19 @@ class FreqaiDataKitchen:
|
|||
]
|
||||
return dataframe[to_keep]
|
||||
|
||||
def get_current_trade_database(self) -> None:
|
||||
|
||||
if self.database_path == '':
|
||||
logger.warning('No trade databse found. Skipping analysis.')
|
||||
return
|
||||
|
||||
data = sqlite3.connect(self.database_path)
|
||||
query = data.execute("SELECT * From trades")
|
||||
cols = [column[0] for column in query.description]
|
||||
df = pd.DataFrame.from_records(data=query.fetchall(), columns=cols)
|
||||
self.trade_database_df = df.dropna(subset='close_date')
|
||||
data.close()
|
||||
|
||||
def np_encoder(self, object):
|
||||
if isinstance(object, np.generic):
|
||||
return object.item()
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
# import contextlib
|
||||
import copy
|
||||
import datetime
|
||||
import logging
|
||||
import shutil
|
||||
|
@ -46,7 +45,7 @@ class IFreqaiModel(ABC):
|
|||
Robert Caulk @robcaulk
|
||||
|
||||
Theoretical brainstorming:
|
||||
Elin Törnquist @thorntwig
|
||||
Elin Törnquist @th0rntwig
|
||||
|
||||
Code review, software architecture brainstorming:
|
||||
@xmatthias
|
||||
|
@ -81,6 +80,8 @@ class IFreqaiModel(ABC):
|
|||
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
|
||||
self.pair_it = 0
|
||||
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
|
||||
self.last_trade_database_summary: DataFrame = {}
|
||||
self.current_trade_database_summary: DataFrame = {}
|
||||
|
||||
def assert_config(self, config: Dict[str, Any]) -> None:
|
||||
|
||||
|
@ -479,6 +480,9 @@ class IFreqaiModel(ABC):
|
|||
|
||||
model = self.train(unfiltered_dataframe, pair, dk)
|
||||
|
||||
dk.get_current_trade_database()
|
||||
self.analyze_trade_database(dk, pair)
|
||||
|
||||
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
|
||||
dk.set_new_model_names(pair, new_trained_timerange)
|
||||
self.dd.pair_dict[pair]["first"] = False
|
||||
|
@ -493,13 +497,50 @@ class IFreqaiModel(ABC):
|
|||
def set_initial_historic_predictions(
|
||||
self, df: DataFrame, model: Any, dk: FreqaiDataKitchen, pair: str
|
||||
) -> None:
|
||||
trained_predictions = model.predict(df)
|
||||
"""
|
||||
This function is called only if the datadrawer failed to load an
|
||||
existing set of historic predictions. In this case, it builds
|
||||
the structure and sets fake predictions off the first training
|
||||
data. After that, FreqAI will append new real predictions to the
|
||||
set of historic predictions.
|
||||
|
||||
These values are used to generate live statistics which can be used
|
||||
in the strategy for adaptive values. E.g. &*_mean/std are quantities
|
||||
that can computed based on live predictions from the set of historical
|
||||
predictions. Those values can be used in the user strategy to better
|
||||
assess prediction rarity, and thus wait for probabilistically favorable
|
||||
entries relative to the live historical predictions.
|
||||
|
||||
If the user reuses an identifier on a subsequent instance,
|
||||
this function will not be called. In that case, "real" predictions
|
||||
will be appended to the loaded set of historic predictions.
|
||||
:param: df: DataFrame = the dataframe containing the training feature data
|
||||
:param: model: Any = A model which was `fit` using a common librariy such as
|
||||
catboost or lightgbm
|
||||
:param: dk: FreqaiDataKitchen = object containing methods for data analysis
|
||||
:param: pair: str = current pair
|
||||
"""
|
||||
num_candles = self.freqai_info.get('fit_live_predictions_candles', 600)
|
||||
df_tail = df.tail(num_candles)
|
||||
trained_predictions = model.predict(df_tail)
|
||||
pred_df = DataFrame(trained_predictions, columns=dk.label_list)
|
||||
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
|
||||
self.dd.historic_predictions[pair] = pd.DataFrame()
|
||||
self.dd.historic_predictions[pair] = copy.deepcopy(pred_df)
|
||||
self.dd.historic_predictions[pair] = pred_df
|
||||
hist_preds_df = self.dd.historic_predictions[pair]
|
||||
|
||||
hist_preds_df['do_predict'] = 0
|
||||
|
||||
if self.freqai_info['feature_parameters'].get('DI_threshold', 0) > 0:
|
||||
hist_preds_df['DI_values'] = 0
|
||||
|
||||
for label in dk.data['labels_mean']:
|
||||
hist_preds_df[f'{label}_mean'] = 0
|
||||
hist_preds_df[f'{label}_std'] = 0
|
||||
|
||||
for return_str in dk.data['extra_returns_per_train']:
|
||||
hist_preds_df[return_str] = 0
|
||||
|
||||
def fit_live_predictions(self, dk: FreqaiDataKitchen) -> None:
|
||||
"""
|
||||
|
@ -565,3 +606,20 @@ class IFreqaiModel(ABC):
|
|||
"""
|
||||
|
||||
return
|
||||
|
||||
def analyze_trade_database(self, dk: FreqaiDataKitchen, pair: str) -> None:
|
||||
"""
|
||||
User analyzes the trade database here and returns summary stats which will be passed back
|
||||
to the strategy for reinforcement learning or for additional adaptive metrics for use
|
||||
in entry/exit signals. Store these metrics in dk.data['extra_returns_per_train'] and
|
||||
they will format themselves into the dataframe as an additional column in the user
|
||||
strategy. User has access to the current trade database in dk.trade_database_df.
|
||||
"""
|
||||
if dk.trade_database_df.empty:
|
||||
logger.warning(f'No trades found for {pair} to analyze DB')
|
||||
return
|
||||
|
||||
total_profit = dk.trade_database_df['close_profit_abs'].sum()
|
||||
dk.data['extra_returns_per_train']['total_profit'] = total_profit
|
||||
|
||||
return
|
||||
|
|
Loading…
Reference in New Issue
Block a user