mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
increase test coverage for RL and FreqAI
This commit is contained in:
parent
95121550ef
commit
9c361f4422
|
@ -1,109 +0,0 @@
|
|||
{
|
||||
"trading_mode": "futures",
|
||||
"new_pairs_days": 30,
|
||||
"margin_mode": "isolated",
|
||||
"max_open_trades": 8,
|
||||
"stake_currency": "USDT",
|
||||
"stake_amount": 1000,
|
||||
"tradable_balance_ratio": 1,
|
||||
"fiat_display_currency": "USD",
|
||||
"dry_run": true,
|
||||
"timeframe": "5m",
|
||||
"dataformat_ohlcv": "json",
|
||||
"dry_run_wallet": 12000,
|
||||
"cancel_open_orders_on_exit": true,
|
||||
"unfilledtimeout": {
|
||||
"entry": 10,
|
||||
"exit": 30
|
||||
},
|
||||
"exchange": {
|
||||
"name": "binance",
|
||||
"key": "",
|
||||
"secret": "",
|
||||
"ccxt_config": {
|
||||
"enableRateLimit": true
|
||||
},
|
||||
"ccxt_async_config": {
|
||||
"enableRateLimit": true,
|
||||
"rateLimit": 200
|
||||
},
|
||||
"pair_whitelist": [
|
||||
"1INCH/USDT",
|
||||
"AAVE/USDT"
|
||||
],
|
||||
"pair_blacklist": []
|
||||
},
|
||||
"entry_pricing": {
|
||||
"price_side": "same",
|
||||
"use_order_book": true,
|
||||
"order_book_top": 1,
|
||||
"price_last_balance": 0.0,
|
||||
"check_depth_of_market": {
|
||||
"enabled": false,
|
||||
"bids_to_ask_delta": 1
|
||||
}
|
||||
},
|
||||
"exit_pricing": {
|
||||
"price_side": "other",
|
||||
"use_order_book": true,
|
||||
"order_book_top": 1
|
||||
},
|
||||
"pairlists": [
|
||||
{
|
||||
"method": "StaticPairList"
|
||||
}
|
||||
],
|
||||
"freqai": {
|
||||
"enabled": true,
|
||||
"model_save_type": "stable_baselines",
|
||||
"conv_width": 4,
|
||||
"purge_old_models": true,
|
||||
"limit_ram_usage": false,
|
||||
"train_period_days": 5,
|
||||
"backtest_period_days": 2,
|
||||
"identifier": "unique-id",
|
||||
"continual_learning": false,
|
||||
"data_kitchen_thread_count": 2,
|
||||
"feature_parameters": {
|
||||
"include_corr_pairlist": [
|
||||
"BTC/USDT",
|
||||
"ETH/USDT"
|
||||
],
|
||||
"include_timeframes": [
|
||||
"5m",
|
||||
"30m"
|
||||
],
|
||||
"indicator_max_period_candles": 20,
|
||||
"indicator_periods_candles": [14]
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"test_size": 0.5,
|
||||
"random_state": 1,
|
||||
"shuffle": false
|
||||
},
|
||||
"model_training_parameters": {
|
||||
"learning_rate": 0.00025,
|
||||
"gamma": 0.9,
|
||||
"verbose": 1
|
||||
},
|
||||
"rl_config": {
|
||||
"train_cycles": 6,
|
||||
"thread_count": 4,
|
||||
"max_trade_duration_candles": 300,
|
||||
"model_type": "PPO",
|
||||
"policy_type": "MlpPolicy",
|
||||
"max_training_drawdown_pct": 0.5,
|
||||
"model_reward_parameters": {
|
||||
"rr": 1,
|
||||
"profit_aim": 0.02,
|
||||
"win_reward_factor": 2
|
||||
}
|
||||
}
|
||||
},
|
||||
"bot_name": "RL_test",
|
||||
"force_entry_enable": true,
|
||||
"initial_state": "running",
|
||||
"internals": {
|
||||
"process_throttle_secs": 5
|
||||
}
|
||||
}
|
|
@ -602,22 +602,3 @@ class FreqaiDataDrawer:
|
|||
)
|
||||
|
||||
return corr_dataframes, base_dataframes
|
||||
|
||||
# to be used if we want to send predictions directly to the follower instead of forcing
|
||||
# follower to load models and inference
|
||||
# def save_model_return_values_to_disk(self) -> None:
|
||||
# with open(self.full_path / str('model_return_values.json'), "w") as fp:
|
||||
# json.dump(self.model_return_values, fp, default=self.np_encoder)
|
||||
|
||||
# def load_model_return_values_from_disk(self, dk: FreqaiDataKitchen) -> FreqaiDataKitchen:
|
||||
# exists = Path(self.full_path / str('model_return_values.json')).resolve().exists()
|
||||
# if exists:
|
||||
# with open(self.full_path / str('model_return_values.json'), "r") as fp:
|
||||
# self.model_return_values = json.load(fp)
|
||||
# elif not self.follow_mode:
|
||||
# logger.info("Could not find existing datadrawer, starting from scratch")
|
||||
# else:
|
||||
# logger.warning(f'Follower could not find pair_dictionary at {self.full_path} '
|
||||
# 'sending null values back to strategy')
|
||||
|
||||
# return exists, dk
|
||||
|
|
|
@ -4,13 +4,15 @@ from pathlib import Path
|
|||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.plugins.pairlistmanager import PairListManager
|
||||
from tests.conftest import get_patched_exchange, log_has_re
|
||||
from tests.freqai.conftest import get_patched_freqai_strategy
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.freqai.utils import download_all_data_for_training, get_required_data_timerange
|
||||
|
||||
|
||||
def is_arm() -> bool:
|
||||
|
@ -173,29 +175,34 @@ def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
|
|||
shutil.rmtree(Path(freqai.dk.full_path))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model', [
|
||||
'LightGBMRegressor',
|
||||
'XGBoostRegressor',
|
||||
'CatboostRegressor',
|
||||
'ReinforcementLearner'
|
||||
])
|
||||
def test_start_backtesting(mocker, freqai_conf, model):
|
||||
@pytest.mark.parametrize(
|
||||
"model, num_files, strat",
|
||||
[
|
||||
("LightGBMRegressor", 6, "freqai_test_strat"),
|
||||
("XGBoostRegressor", 6, "freqai_test_strat"),
|
||||
("CatboostRegressor", 6, "freqai_test_strat"),
|
||||
("ReinforcementLearner", 7, "freqai_rl_test_strat"),
|
||||
("XGBoostClassifier", 6, "freqai_test_classifier"),
|
||||
("LightGBMClassifier", 6, "freqai_test_classifier"),
|
||||
("CatboostClassifier", 6, "freqai_test_classifier")
|
||||
],
|
||||
)
|
||||
def test_start_backtesting(mocker, freqai_conf, model, num_files, strat):
|
||||
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
|
||||
|
||||
if is_arm() and model == 'CatboostRegressor':
|
||||
freqai_conf['runmode'] = RunMode.BACKTEST
|
||||
Trade.use_db = False
|
||||
if is_arm() and "Catboost" in model:
|
||||
pytest.skip("CatBoost is not supported on ARM")
|
||||
|
||||
if is_mac():
|
||||
pytest.skip("Reinforcement learning module not available on intel based Mac OS")
|
||||
|
||||
model_save_ext = 'joblib'
|
||||
freqai_conf.update({"freqaimodel": model})
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
freqai_conf.update({"strategy": "freqai_test_strat"})
|
||||
freqai_conf.update({"timerange": "20180120-20180130"})
|
||||
freqai_conf.update({"strategy": strat})
|
||||
|
||||
if 'ReinforcementLearner' in model:
|
||||
model_save_ext = 'zip'
|
||||
freqai_conf.update({"strategy": "freqai_rl_test_strat"})
|
||||
|
||||
freqai_conf["freqai"].update({"model_training_parameters": {
|
||||
"learning_rate": 0.00025,
|
||||
"gamma": 0.9,
|
||||
|
@ -217,8 +224,7 @@ def test_start_backtesting(mocker, freqai_conf, model):
|
|||
|
||||
if 'test_4ac' in model:
|
||||
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
|
||||
|
||||
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
|
@ -237,7 +243,7 @@ def test_start_backtesting(mocker, freqai_conf, model):
|
|||
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
|
||||
|
||||
assert len(model_folders) == 6
|
||||
assert len(model_folders) == num_files
|
||||
|
||||
shutil.rmtree(Path(freqai.dk.full_path))
|
||||
|
||||
|
@ -455,3 +461,40 @@ def test_freqai_informative_pairs(mocker, freqai_conf, timeframes, corr_pairs):
|
|||
pairs_b = strategy.gather_informative_pairs()
|
||||
# we expect unique pairs * timeframes
|
||||
assert len(pairs_b) == len(set(pairlist + corr_pairs)) * len(timeframes)
|
||||
|
||||
|
||||
def test_start_set_train_queue(mocker, freqai_conf, caplog):
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
pairlist = PairListManager(exchange, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange, pairlist)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = False
|
||||
|
||||
freqai.train_queue = freqai._set_train_queue()
|
||||
|
||||
assert log_has_re(
|
||||
"Set fresh train queue from whitelist.",
|
||||
caplog,
|
||||
)
|
||||
|
||||
|
||||
def test_get_required_data_timerange(mocker, freqai_conf):
|
||||
time_range = get_required_data_timerange(freqai_conf)
|
||||
assert (time_range.stopts - time_range.startts) == 177300
|
||||
|
||||
|
||||
def test_download_all_data_for_training(mocker, freqai_conf, caplog, tmpdir):
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
pairlist = PairListManager(exchange, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange, pairlist)
|
||||
freqai_conf['pairs'] = freqai_conf['exchange']['pair_whitelist']
|
||||
freqai_conf['datadir'] = Path(tmpdir)
|
||||
download_all_data_for_training(strategy.dp, freqai_conf)
|
||||
|
||||
assert log_has_re(
|
||||
"Downloading",
|
||||
caplog,
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue
Block a user