mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
pytorch - naming refactor - max_iters to n_steps
This commit is contained in:
parent
d17bf6350d
commit
a3c6904fbc
|
@ -26,7 +26,7 @@ class PyTorchMLPClassifier(BasePyTorchClassifier):
|
|||
"model_training_parameters" : {
|
||||
"learning_rate": 3e-4,
|
||||
"trainer_kwargs": {
|
||||
"max_iters": 5000,
|
||||
"n_steps": 5000,
|
||||
"batch_size": 64,
|
||||
"n_epochs": null,
|
||||
},
|
||||
|
|
|
@ -27,7 +27,7 @@ class PyTorchMLPRegressor(BasePyTorchRegressor):
|
|||
"model_training_parameters" : {
|
||||
"learning_rate": 3e-4,
|
||||
"trainer_kwargs": {
|
||||
"max_iters": 5000,
|
||||
"n_steps": 5000,
|
||||
"batch_size": 64,
|
||||
"n_epochs": null,
|
||||
},
|
||||
|
|
|
@ -30,7 +30,7 @@ class PyTorchTransformerRegressor(BasePyTorchRegressor):
|
|||
"model_training_parameters" : {
|
||||
"learning_rate": 3e-4,
|
||||
"trainer_kwargs": {
|
||||
"max_iters": 5000,
|
||||
"n_steps": 5000,
|
||||
"batch_size": 64,
|
||||
"n_epochs": null
|
||||
},
|
||||
|
|
|
@ -39,7 +39,7 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
|
|||
state_dict and model_meta_data saved by self.save() method.
|
||||
:param model_meta_data: Additional metadata about the model (optional).
|
||||
:param data_convertor: convertor from pd.DataFrame to torch.tensor.
|
||||
:param max_iters: used to calculate n_epochs. The number of training iterations to run.
|
||||
:param n_steps: used to calculate n_epochs. The number of training iterations to run.
|
||||
iteration here refers to the number of times optimizer.step() is called.
|
||||
ignored if n_epochs is set.
|
||||
:param n_epochs: The maximum number batches to use for evaluation.
|
||||
|
@ -50,10 +50,10 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
|
|||
self.criterion = criterion
|
||||
self.model_meta_data = model_meta_data
|
||||
self.device = device
|
||||
self.max_iters: int = kwargs.get("max_iters", None)
|
||||
self.n_steps: int = kwargs.get("n_steps", None)
|
||||
self.n_epochs: Optional[int] = kwargs.get("n_epochs", 10)
|
||||
if not self.max_iters and not self.n_epochs:
|
||||
raise Exception("Either `max_iters` or `n_epochs` should be set.")
|
||||
if not self.n_steps and not self.n_epochs:
|
||||
raise Exception("Either `n_steps` or `n_epochs` should be set.")
|
||||
|
||||
self.batch_size: int = kwargs.get("batch_size", 64)
|
||||
self.data_convertor = data_convertor
|
||||
|
@ -82,7 +82,7 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
|
|||
n_epochs = self.n_epochs or self.calc_n_epochs(
|
||||
n_obs=n_obs,
|
||||
batch_size=self.batch_size,
|
||||
n_iters=self.max_iters,
|
||||
n_iters=self.n_steps,
|
||||
)
|
||||
|
||||
batch_counter = 0
|
||||
|
@ -153,7 +153,7 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
|
|||
Calculates the number of epochs required to reach the maximum number
|
||||
of iterations specified in the model training parameters.
|
||||
|
||||
the motivation here is that `max_iters` is easier to optimize and keep stable,
|
||||
the motivation here is that `n_steps` is easier to optimize and keep stable,
|
||||
across different n_obs - the number of data points.
|
||||
"""
|
||||
|
||||
|
@ -162,7 +162,7 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
|
|||
if n_epochs <= 10:
|
||||
logger.warning(
|
||||
f"Setting low n_epochs: {n_epochs}. "
|
||||
f"Please consider increasing `max_iters` hyper-parameter."
|
||||
f"Please consider increasing `n_steps` hyper-parameter."
|
||||
)
|
||||
|
||||
return n_epochs
|
||||
|
|
|
@ -97,9 +97,9 @@ def mock_pytorch_mlp_model_training_parameters() -> Dict[str, Any]:
|
|||
return {
|
||||
"learning_rate": 3e-4,
|
||||
"trainer_kwargs": {
|
||||
"max_iters": 1,
|
||||
"n_steps": None,
|
||||
"batch_size": 64,
|
||||
"n_epochs": None,
|
||||
"n_epochs": 1,
|
||||
},
|
||||
"model_kwargs": {
|
||||
"hidden_dim": 32,
|
||||
|
|
Loading…
Reference in New Issue
Block a user