mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 02:12:01 +00:00
Rename open_time and close_time to *date
This commit is contained in:
parent
415853583b
commit
b068e7c564
|
@ -16,7 +16,7 @@ from freqtrade.persistence import Trade
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
# must align with columns in backtest.py
|
||||
BT_DATA_COLUMNS = ["pair", "profit_percent", "open_time", "close_time", "index", "duration",
|
||||
BT_DATA_COLUMNS = ["pair", "profit_percent", "open_date", "close_date", "index", "duration",
|
||||
"open_rate", "close_rate", "open_at_end", "sell_reason"]
|
||||
|
||||
|
||||
|
@ -54,18 +54,18 @@ def load_backtest_data(filename: Union[Path, str]) -> pd.DataFrame:
|
|||
|
||||
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS)
|
||||
|
||||
df['open_time'] = pd.to_datetime(df['open_time'],
|
||||
df['open_date'] = pd.to_datetime(df['open_date'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['close_time'] = pd.to_datetime(df['close_time'],
|
||||
df['close_date'] = pd.to_datetime(df['close_date'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['profit'] = df['close_rate'] - df['open_rate']
|
||||
df = df.sort_values("open_time").reset_index(drop=True)
|
||||
df = df.sort_values("open_date").reset_index(drop=True)
|
||||
return df
|
||||
|
||||
|
||||
|
@ -79,9 +79,9 @@ def analyze_trade_parallelism(results: pd.DataFrame, timeframe: str) -> pd.DataF
|
|||
"""
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
timeframe_min = timeframe_to_minutes(timeframe)
|
||||
dates = [pd.Series(pd.date_range(row[1].open_time, row[1].close_time,
|
||||
dates = [pd.Series(pd.date_range(row[1]['open_date'], row[1]['close_date'],
|
||||
freq=f"{timeframe_min}min"))
|
||||
for row in results[['open_time', 'close_time']].iterrows()]
|
||||
for row in results[['open_date', 'close_date']].iterrows()]
|
||||
deltas = [len(x) for x in dates]
|
||||
dates = pd.Series(pd.concat(dates).values, name='date')
|
||||
df2 = pd.DataFrame(np.repeat(results.values, deltas, axis=0), columns=results.columns)
|
||||
|
@ -116,7 +116,7 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
|
|||
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
|
||||
persistence.init(db_url, clean_open_orders=False)
|
||||
|
||||
columns = ["pair", "open_time", "close_time", "profit", "profit_percent",
|
||||
columns = ["pair", "open_date", "close_date", "profit", "profit_percent",
|
||||
"open_rate", "close_rate", "amount", "duration", "sell_reason",
|
||||
"fee_open", "fee_close", "open_rate_requested", "close_rate_requested",
|
||||
"stake_amount", "max_rate", "min_rate", "id", "exchange",
|
||||
|
@ -180,8 +180,8 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
|
|||
else:
|
||||
trades_start = dataframe.iloc[0]['date']
|
||||
trades_stop = dataframe.iloc[-1]['date']
|
||||
trades = trades.loc[(trades['open_time'] >= trades_start) &
|
||||
(trades['close_time'] <= trades_stop)]
|
||||
trades = trades.loc[(trades['open_date'] >= trades_start) &
|
||||
(trades['close_date'] <= trades_stop)]
|
||||
return trades
|
||||
|
||||
|
||||
|
@ -227,7 +227,7 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
|||
"""
|
||||
Adds a column `col_name` with the cumulative profit for the given trades array.
|
||||
:param df: DataFrame with date index
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profit_percent)
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
|
||||
:param col_name: Column name that will be assigned the results
|
||||
:param timeframe: Timeframe used during the operations
|
||||
:return: Returns df with one additional column, col_name, containing the cumulative profit.
|
||||
|
@ -238,7 +238,7 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
|||
from freqtrade.exchange import timeframe_to_minutes
|
||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||
# Resample to timeframe to make sure trades match candles
|
||||
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_time'
|
||||
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_date'
|
||||
)[['profit_percent']].sum()
|
||||
df.loc[:, col_name] = _trades_sum.cumsum()
|
||||
# Set first value to 0
|
||||
|
@ -248,13 +248,13 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
|||
return df
|
||||
|
||||
|
||||
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time',
|
||||
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
||||
value_col: str = 'profit_percent'
|
||||
) -> Tuple[float, pd.Timestamp, pd.Timestamp]:
|
||||
"""
|
||||
Calculate max drawdown and the corresponding close dates
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profit_percent)
|
||||
:param date_col: Column in DataFrame to use for dates (defaults to 'close_time')
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
|
||||
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
|
||||
:param value_col: Column in DataFrame to use for values (defaults to 'profit_percent')
|
||||
:return: Tuple (float, highdate, lowdate) with absolute max drawdown, high and low time
|
||||
:raise: ValueError if trade-dataframe was found empty.
|
||||
|
|
|
@ -237,7 +237,7 @@ class Edge:
|
|||
# All returned values are relative, they are defined as ratios.
|
||||
stake = 0.015
|
||||
|
||||
result['trade_duration'] = result['close_time'] - result['open_time']
|
||||
result['trade_duration'] = result['close_date'] - result['open_date']
|
||||
|
||||
result['trade_duration'] = result['trade_duration'].map(
|
||||
lambda x: int(x.total_seconds() / 60))
|
||||
|
@ -427,8 +427,8 @@ class Edge:
|
|||
'stoploss': stoploss,
|
||||
'profit_ratio': '',
|
||||
'profit_abs': '',
|
||||
'open_time': date_column[open_trade_index],
|
||||
'close_time': date_column[exit_index],
|
||||
'open_date': date_column[open_trade_index],
|
||||
'close_date': date_column[exit_index],
|
||||
'open_index': start_point + open_trade_index,
|
||||
'close_index': start_point + exit_index,
|
||||
'trade_duration': '',
|
||||
|
|
|
@ -39,8 +39,8 @@ class BacktestResult(NamedTuple):
|
|||
pair: str
|
||||
profit_percent: float
|
||||
profit_abs: float
|
||||
open_time: datetime
|
||||
close_time: datetime
|
||||
open_date: datetime
|
||||
close_date: datetime
|
||||
open_index: int
|
||||
close_index: int
|
||||
trade_duration: float
|
||||
|
@ -248,8 +248,8 @@ class Backtesting:
|
|||
return BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_ratio(rate=closerate),
|
||||
profit_abs=trade.calc_profit(rate=closerate),
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
open_date=buy_row.date,
|
||||
close_date=sell_row.date,
|
||||
trade_duration=trade_dur,
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
|
@ -264,8 +264,8 @@ class Backtesting:
|
|||
bt_res = BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_ratio(rate=sell_row.open),
|
||||
profit_abs=trade.calc_profit(rate=sell_row.open),
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
open_date=buy_row.date,
|
||||
close_date=sell_row.date,
|
||||
trade_duration=int((
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
open_index=buy_row.Index,
|
||||
|
@ -358,8 +358,8 @@ class Backtesting:
|
|||
|
||||
if trade_entry:
|
||||
logger.debug(f"{pair} - Locking pair till "
|
||||
f"close_time={trade_entry.close_time}")
|
||||
lock_pair_until[pair] = trade_entry.close_time
|
||||
f"close_date={trade_entry.close_date}")
|
||||
lock_pair_until[pair] = trade_entry.close_date
|
||||
trades.append(trade_entry)
|
||||
else:
|
||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||
|
@ -421,4 +421,5 @@ class Backtesting:
|
|||
stats = generate_backtest_stats(self.config, data, all_results,
|
||||
min_date=min_date, max_date=max_date)
|
||||
show_backtest_results(self.config, stats)
|
||||
store_backtest_stats(self.config['exportfilename'], stats)
|
||||
if self.config.get('export', False):
|
||||
store_backtest_stats(self.config['exportfilename'], stats)
|
||||
|
|
|
@ -43,7 +43,7 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
|
|||
normalize=True)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on='close_time').agg(
|
||||
results.resample(resample_freq, on='close_date').agg(
|
||||
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
|
||||
)
|
||||
|
||||
|
|
|
@ -45,7 +45,7 @@ class SortinoHyperOptLossDaily(IHyperOptLoss):
|
|||
normalize=True)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on='close_time').agg(
|
||||
results.resample(resample_freq, on='close_date').agg(
|
||||
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
|
||||
)
|
||||
|
||||
|
|
|
@ -52,8 +52,8 @@ def backtest_result_to_list(results: DataFrame) -> List[List]:
|
|||
:param results: Dataframe containing results for one strategy
|
||||
:return: List of Lists containing the trades
|
||||
"""
|
||||
return [[t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
return [[t.pair, t.profit_percent, t.open_date.timestamp(),
|
||||
t.open_date.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value]
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
|
@ -350,10 +350,10 @@ def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
|||
|
||||
def text_table_add_metrics(strategy_results: Dict) -> str:
|
||||
if len(strategy_results['trades']) > 0:
|
||||
min_trade = min(strategy_results['trades'], key=lambda x: x['open_time'])
|
||||
min_trade = min(strategy_results['trades'], key=lambda x: x['open_date'])
|
||||
metrics = [
|
||||
('Total trades', strategy_results['total_trades']),
|
||||
('First trade', min_trade['open_time'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('First trade', min_trade['open_date'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('First trade Pair', min_trade['pair']),
|
||||
('Backtesting from', strategy_results['backtest_start'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('Backtesting to', strategy_results['backtest_end'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
|
|
|
@ -63,7 +63,7 @@ def init_plotscript(config):
|
|||
exportfilename=config.get('exportfilename'),
|
||||
no_trades=no_trades
|
||||
)
|
||||
trades = trim_dataframe(trades, timerange, 'open_time')
|
||||
trades = trim_dataframe(trades, timerange, 'open_date')
|
||||
|
||||
return {"ohlcv": data,
|
||||
"trades": trades,
|
||||
|
@ -166,7 +166,7 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
|
|||
f"{row['sell_reason']}, {row['duration']} min",
|
||||
axis=1)
|
||||
trade_buys = go.Scatter(
|
||||
x=trades["open_time"],
|
||||
x=trades["open_date"],
|
||||
y=trades["open_rate"],
|
||||
mode='markers',
|
||||
name='Trade buy',
|
||||
|
@ -181,7 +181,7 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
|
|||
)
|
||||
|
||||
trade_sells = go.Scatter(
|
||||
x=trades.loc[trades['profit_percent'] > 0, "close_time"],
|
||||
x=trades.loc[trades['profit_percent'] > 0, "close_date"],
|
||||
y=trades.loc[trades['profit_percent'] > 0, "close_rate"],
|
||||
text=trades.loc[trades['profit_percent'] > 0, "desc"],
|
||||
mode='markers',
|
||||
|
@ -194,7 +194,7 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
|
|||
)
|
||||
)
|
||||
trade_sells_loss = go.Scatter(
|
||||
x=trades.loc[trades['profit_percent'] <= 0, "close_time"],
|
||||
x=trades.loc[trades['profit_percent'] <= 0, "close_date"],
|
||||
y=trades.loc[trades['profit_percent'] <= 0, "close_rate"],
|
||||
text=trades.loc[trades['profit_percent'] <= 0, "desc"],
|
||||
mode='markers',
|
||||
|
@ -506,7 +506,7 @@ def plot_profit(config: Dict[str, Any]) -> None:
|
|||
# Remove open pairs - we don't know the profit yet so can't calculate profit for these.
|
||||
# Also, If only one open pair is left, then the profit-generation would fail.
|
||||
trades = trades[(trades['pair'].isin(plot_elements["pairs"]))
|
||||
& (~trades['close_time'].isnull())
|
||||
& (~trades['close_date'].isnull())
|
||||
]
|
||||
if len(trades) == 0:
|
||||
raise OperationalException("No trades found, cannot generate Profit-plot without "
|
||||
|
|
Loading…
Reference in New Issue
Block a user