Merge pull request #3267 from GrilledChickenThighs/develop

Method for accessing current pairlist inside strategy.
This commit is contained in:
hroff-1902 2020-05-13 21:29:39 +03:00 committed by GitHub
commit b4d2433fc1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 154 additions and 65 deletions

View File

@ -324,62 +324,9 @@ class Awesomestrategy(IStrategy):
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
### Additional data (DataProvider)
***
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
All methods return `None` in case of failure (do not raise an exception).
Please always check the mode of operation to select the correct method to get data (samples see below).
#### Possible options for DataProvider
- `available_pairs` - Property with tuples listing cached pairs with their intervals (pair, interval).
- `ohlcv(pair, timeframe)` - Currently cached candle (OHLCV) data for the pair, returns DataFrame or empty DataFrame.
- `historic_ohlcv(pair, timeframe)` - Returns historical data stored on disk.
- `get_pair_dataframe(pair, timeframe)` - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
- `orderbook(pair, maximum)` - Returns latest orderbook data for the pair, a dict with bids/asks with a total of `maximum` entries.
- `market(pair)` - Returns market data for the pair: fees, limits, precisions, activity flag, etc. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#markets) for more details on Market data structure.
- `runmode` - Property containing the current runmode.
#### Example: fetch live / historical candle (OHLCV) data for the first informative pair
``` python
if self.dp:
inf_pair, inf_timeframe = self.informative_pairs()[0]
informative = self.dp.get_pair_dataframe(pair=inf_pair,
timeframe=inf_timeframe)
```
!!! Warning "Warning about backtesting"
Be carefull when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
for the backtesting runmode) provides the full time-range in one go,
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode).
!!! Warning "Warning in hyperopt"
This option cannot currently be used during hyperopt.
#### Orderbook
``` python
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
```
!!! Warning
The order book is not part of the historic data which means backtesting and hyperopt will not work if this
method is used.
#### Available Pairs
``` python
if self.dp:
for pair, timeframe in self.dp.available_pairs:
print(f"available {pair}, {timeframe}")
```
### Additional data (informative_pairs)
#### Get data for non-tradeable pairs
@ -404,6 +351,107 @@ def informative_pairs(self):
It is however better to use resampling to longer time-intervals when possible
to avoid hammering the exchange with too many requests and risk being blocked.
***
### Additional data (DataProvider)
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
All methods return `None` in case of failure (do not raise an exception).
Please always check the mode of operation to select the correct method to get data (samples see below).
#### Possible options for DataProvider
- [`available_pairs`](#available_pairs) - Property with tuples listing cached pairs with their intervals (pair, interval).
- [`current_whitelist()`](#current_whitelist) - Returns a current list of whitelisted pairs. Useful for accessing dynamic whitelists (ie. VolumePairlist)
- [`get_pair_dataframe(pair, timeframe)`](#get_pair_dataframepair-timeframe) - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
- `historic_ohlcv(pair, timeframe)` - Returns historical data stored on disk.
- `market(pair)` - Returns market data for the pair: fees, limits, precisions, activity flag, etc. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#markets) for more details on Market data structure.
- `ohlcv(pair, timeframe)` - Currently cached candle (OHLCV) data for the pair, returns DataFrame or empty DataFrame.
- [`orderbook(pair, maximum)`](#orderbookpair-maximum) - Returns latest orderbook data for the pair, a dict with bids/asks with a total of `maximum` entries.
- `runmode` - Property containing the current runmode.
#### Example Usages:
#### *available_pairs*
``` python
if self.dp:
for pair, timeframe in self.dp.available_pairs:
print(f"available {pair}, {timeframe}")
```
#### *current_whitelist()*
Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 volume pairs by volume.
The strategy might look something like this:
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day ATR to buy and sell.*
Due to the limited available data, it's very difficult to resample our `5m` candles into daily candles for use in a 14 day ATR. Most exchanges limit us to just 500 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
Since we can't resample our data we will have to use an informative pair; and since our whitelist will be dynamic we don't know which pair(s) to use.
This is where calling `self.dp.current_whitelist()` comes in handy.
```python
class SampleStrategy(IStrategy):
# strategy init stuff...
ticker_interval = '5m'
# more strategy init stuff..
def informative_pairs(self):
# get access to all pairs available in whitelist.
pairs = self.dp.current_whitelist()
# Assign tf to each pair so they can be downloaded and cached for strategy.
informative_pairs = [(pair, '1d') for pair in pairs]
return informative_pairs
def populate_indicators(self, dataframe, metadata):
# Get the informative pair
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe='1d')
# Get the 14 day ATR.
atr = ta.ATR(informative, timeperiod=14)
# Do other stuff
```
#### *get_pair_dataframe(pair, timeframe)*
``` python
# fetch live / historical candle (OHLCV) data for the first informative pair
if self.dp:
inf_pair, inf_timeframe = self.informative_pairs()[0]
informative = self.dp.get_pair_dataframe(pair=inf_pair,
timeframe=inf_timeframe)
```
!!! Warning "Warning about backtesting"
Be carefull when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
for the backtesting runmode) provides the full time-range in one go,
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode).
!!! Warning "Warning in hyperopt"
This option cannot currently be used during hyperopt.
#### *orderbook(pair, maximum)*
``` python
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
```
!!! Warning
The order book is not part of the historic data which means backtesting and hyperopt will not work if this
method is used.
***
### Additional data (Wallets)
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
@ -426,6 +474,7 @@ if self.wallets:
- `get_used(asset)` - currently tied up balance (open orders)
- `get_total(asset)` - total available balance - sum of the 2 above
***
### Additional data (Trades)
A history of Trades can be retrieved in the strategy by querying the database.

View File

@ -10,6 +10,7 @@ from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame
from freqtrade.data.history import load_pair_history
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
from freqtrade.state import RunMode
@ -18,9 +19,10 @@ logger = logging.getLogger(__name__)
class DataProvider:
def __init__(self, config: dict, exchange: Exchange) -> None:
def __init__(self, config: dict, exchange: Exchange, pairlists=None) -> None:
self._config = config
self._exchange = exchange
self._pairlists = pairlists
def refresh(self,
pairlist: List[Tuple[str, str]],
@ -116,3 +118,17 @@ class DataProvider:
can be "live", "dry-run", "backtest", "edgecli", "hyperopt" or "other".
"""
return RunMode(self._config.get('runmode', RunMode.OTHER))
def current_whitelist(self) -> List[str]:
"""
fetch latest available whitelist.
Useful when you have a large whitelist and need to call each pair as an informative pair.
As available pairs does not show whitelist until after informative pairs have been cached.
:return: list of pairs in whitelist
"""
if self._pairlists:
return self._pairlists.whitelist
else:
raise OperationalException("Dataprovider was not initialized with a pairlist provider.")

View File

@ -71,15 +71,15 @@ class FreqtradeBot:
self.wallets = Wallets(self.config, self.exchange)
self.dataprovider = DataProvider(self.config, self.exchange)
self.pairlists = PairListManager(self.exchange, self.config)
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
# Attach Dataprovider to Strategy baseclass
IStrategy.dp = self.dataprovider
# Attach Wallets to Strategy baseclass
IStrategy.wallets = self.wallets
self.pairlists = PairListManager(self.exchange, self.config)
# Initializing Edge only if enabled
self.edge = Edge(self.config, self.exchange, self.strategy) if \
self.config.get('edge', {}).get('enabled', False) else None

View File

@ -1,8 +1,11 @@
from unittest.mock import MagicMock
from pandas import DataFrame
import pytest
from freqtrade.data.dataprovider import DataProvider
from freqtrade.pairlist.pairlistmanager import PairListManager
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
from tests.conftest import get_patched_exchange
@ -64,8 +67,8 @@ def test_get_pair_dataframe(mocker, default_conf, ohlcv_history):
assert dp.get_pair_dataframe("NONESENSE/AAA", ticker_interval).empty
# Test with and without parameter
assert dp.get_pair_dataframe("UNITTEST/BTC",
ticker_interval).equals(dp.get_pair_dataframe("UNITTEST/BTC"))
assert dp.get_pair_dataframe("UNITTEST/BTC", ticker_interval)\
.equals(dp.get_pair_dataframe("UNITTEST/BTC"))
default_conf["runmode"] = RunMode.LIVE
dp = DataProvider(default_conf, exchange)
@ -90,10 +93,7 @@ def test_available_pairs(mocker, default_conf, ohlcv_history):
dp = DataProvider(default_conf, exchange)
assert len(dp.available_pairs) == 2
assert dp.available_pairs == [
("XRP/BTC", ticker_interval),
("UNITTEST/BTC", ticker_interval),
]
assert dp.available_pairs == [("XRP/BTC", ticker_interval), ("UNITTEST/BTC", ticker_interval), ]
def test_refresh(mocker, default_conf, ohlcv_history):
@ -152,3 +152,27 @@ def test_market(mocker, default_conf, markets):
res = dp.market('UNITTEST/BTC')
assert res is None
def test_current_whitelist(mocker, default_conf, tickers):
# patch default conf to volumepairlist
default_conf['pairlists'][0] = {'method': 'VolumePairList', "number_assets": 5}
mocker.patch.multiple('freqtrade.exchange.Exchange',
exchange_has=MagicMock(return_value=True),
get_tickers=tickers)
exchange = get_patched_exchange(mocker, default_conf)
pairlist = PairListManager(exchange, default_conf)
dp = DataProvider(default_conf, exchange, pairlist)
# Simulate volumepairs from exchange.
pairlist.refresh_pairlist()
assert dp.current_whitelist() == pairlist._whitelist
# The identity of the 2 lists should be identical
assert dp.current_whitelist() is pairlist._whitelist
with pytest.raises(OperationalException):
dp = DataProvider(default_conf, exchange)
dp.current_whitelist()