mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
Merge pull request #3267 from GrilledChickenThighs/develop
Method for accessing current pairlist inside strategy.
This commit is contained in:
commit
b4d2433fc1
|
@ -324,62 +324,9 @@ class Awesomestrategy(IStrategy):
|
|||
!!! Note
|
||||
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
|
||||
|
||||
### Additional data (DataProvider)
|
||||
***
|
||||
|
||||
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
|
||||
|
||||
All methods return `None` in case of failure (do not raise an exception).
|
||||
|
||||
Please always check the mode of operation to select the correct method to get data (samples see below).
|
||||
|
||||
#### Possible options for DataProvider
|
||||
|
||||
- `available_pairs` - Property with tuples listing cached pairs with their intervals (pair, interval).
|
||||
- `ohlcv(pair, timeframe)` - Currently cached candle (OHLCV) data for the pair, returns DataFrame or empty DataFrame.
|
||||
- `historic_ohlcv(pair, timeframe)` - Returns historical data stored on disk.
|
||||
- `get_pair_dataframe(pair, timeframe)` - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
|
||||
- `orderbook(pair, maximum)` - Returns latest orderbook data for the pair, a dict with bids/asks with a total of `maximum` entries.
|
||||
- `market(pair)` - Returns market data for the pair: fees, limits, precisions, activity flag, etc. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#markets) for more details on Market data structure.
|
||||
- `runmode` - Property containing the current runmode.
|
||||
|
||||
#### Example: fetch live / historical candle (OHLCV) data for the first informative pair
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
inf_pair, inf_timeframe = self.informative_pairs()[0]
|
||||
informative = self.dp.get_pair_dataframe(pair=inf_pair,
|
||||
timeframe=inf_timeframe)
|
||||
```
|
||||
|
||||
!!! Warning "Warning about backtesting"
|
||||
Be carefull when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
|
||||
for the backtesting runmode) provides the full time-range in one go,
|
||||
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode).
|
||||
|
||||
!!! Warning "Warning in hyperopt"
|
||||
This option cannot currently be used during hyperopt.
|
||||
|
||||
#### Orderbook
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
if self.dp.runmode.value in ('live', 'dry_run'):
|
||||
ob = self.dp.orderbook(metadata['pair'], 1)
|
||||
dataframe['best_bid'] = ob['bids'][0][0]
|
||||
dataframe['best_ask'] = ob['asks'][0][0]
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
The order book is not part of the historic data which means backtesting and hyperopt will not work if this
|
||||
method is used.
|
||||
|
||||
#### Available Pairs
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
for pair, timeframe in self.dp.available_pairs:
|
||||
print(f"available {pair}, {timeframe}")
|
||||
```
|
||||
### Additional data (informative_pairs)
|
||||
|
||||
#### Get data for non-tradeable pairs
|
||||
|
||||
|
@ -404,6 +351,107 @@ def informative_pairs(self):
|
|||
It is however better to use resampling to longer time-intervals when possible
|
||||
to avoid hammering the exchange with too many requests and risk being blocked.
|
||||
|
||||
***
|
||||
|
||||
### Additional data (DataProvider)
|
||||
|
||||
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
|
||||
|
||||
All methods return `None` in case of failure (do not raise an exception).
|
||||
|
||||
Please always check the mode of operation to select the correct method to get data (samples see below).
|
||||
|
||||
#### Possible options for DataProvider
|
||||
|
||||
- [`available_pairs`](#available_pairs) - Property with tuples listing cached pairs with their intervals (pair, interval).
|
||||
- [`current_whitelist()`](#current_whitelist) - Returns a current list of whitelisted pairs. Useful for accessing dynamic whitelists (ie. VolumePairlist)
|
||||
- [`get_pair_dataframe(pair, timeframe)`](#get_pair_dataframepair-timeframe) - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
|
||||
- `historic_ohlcv(pair, timeframe)` - Returns historical data stored on disk.
|
||||
- `market(pair)` - Returns market data for the pair: fees, limits, precisions, activity flag, etc. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#markets) for more details on Market data structure.
|
||||
- `ohlcv(pair, timeframe)` - Currently cached candle (OHLCV) data for the pair, returns DataFrame or empty DataFrame.
|
||||
- [`orderbook(pair, maximum)`](#orderbookpair-maximum) - Returns latest orderbook data for the pair, a dict with bids/asks with a total of `maximum` entries.
|
||||
- `runmode` - Property containing the current runmode.
|
||||
|
||||
#### Example Usages:
|
||||
|
||||
#### *available_pairs*
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
for pair, timeframe in self.dp.available_pairs:
|
||||
print(f"available {pair}, {timeframe}")
|
||||
```
|
||||
|
||||
#### *current_whitelist()*
|
||||
Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 volume pairs by volume.
|
||||
|
||||
The strategy might look something like this:
|
||||
|
||||
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day ATR to buy and sell.*
|
||||
|
||||
Due to the limited available data, it's very difficult to resample our `5m` candles into daily candles for use in a 14 day ATR. Most exchanges limit us to just 500 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
|
||||
|
||||
Since we can't resample our data we will have to use an informative pair; and since our whitelist will be dynamic we don't know which pair(s) to use.
|
||||
|
||||
This is where calling `self.dp.current_whitelist()` comes in handy.
|
||||
|
||||
```python
|
||||
class SampleStrategy(IStrategy):
|
||||
# strategy init stuff...
|
||||
|
||||
ticker_interval = '5m'
|
||||
|
||||
# more strategy init stuff..
|
||||
|
||||
def informative_pairs(self):
|
||||
|
||||
# get access to all pairs available in whitelist.
|
||||
pairs = self.dp.current_whitelist()
|
||||
# Assign tf to each pair so they can be downloaded and cached for strategy.
|
||||
informative_pairs = [(pair, '1d') for pair in pairs]
|
||||
return informative_pairs
|
||||
|
||||
def populate_indicators(self, dataframe, metadata):
|
||||
# Get the informative pair
|
||||
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe='1d')
|
||||
# Get the 14 day ATR.
|
||||
atr = ta.ATR(informative, timeperiod=14)
|
||||
# Do other stuff
|
||||
```
|
||||
|
||||
#### *get_pair_dataframe(pair, timeframe)*
|
||||
|
||||
``` python
|
||||
# fetch live / historical candle (OHLCV) data for the first informative pair
|
||||
if self.dp:
|
||||
inf_pair, inf_timeframe = self.informative_pairs()[0]
|
||||
informative = self.dp.get_pair_dataframe(pair=inf_pair,
|
||||
timeframe=inf_timeframe)
|
||||
```
|
||||
|
||||
!!! Warning "Warning about backtesting"
|
||||
Be carefull when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
|
||||
for the backtesting runmode) provides the full time-range in one go,
|
||||
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode).
|
||||
|
||||
!!! Warning "Warning in hyperopt"
|
||||
This option cannot currently be used during hyperopt.
|
||||
|
||||
#### *orderbook(pair, maximum)*
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
if self.dp.runmode.value in ('live', 'dry_run'):
|
||||
ob = self.dp.orderbook(metadata['pair'], 1)
|
||||
dataframe['best_bid'] = ob['bids'][0][0]
|
||||
dataframe['best_ask'] = ob['asks'][0][0]
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
The order book is not part of the historic data which means backtesting and hyperopt will not work if this
|
||||
method is used.
|
||||
|
||||
***
|
||||
### Additional data (Wallets)
|
||||
|
||||
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
|
||||
|
@ -426,6 +474,7 @@ if self.wallets:
|
|||
- `get_used(asset)` - currently tied up balance (open orders)
|
||||
- `get_total(asset)` - total available balance - sum of the 2 above
|
||||
|
||||
***
|
||||
### Additional data (Trades)
|
||||
|
||||
A history of Trades can be retrieved in the strategy by querying the database.
|
||||
|
|
|
@ -10,6 +10,7 @@ from typing import Any, Dict, List, Optional, Tuple
|
|||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
|
@ -18,9 +19,10 @@ logger = logging.getLogger(__name__)
|
|||
|
||||
class DataProvider:
|
||||
|
||||
def __init__(self, config: dict, exchange: Exchange) -> None:
|
||||
def __init__(self, config: dict, exchange: Exchange, pairlists=None) -> None:
|
||||
self._config = config
|
||||
self._exchange = exchange
|
||||
self._pairlists = pairlists
|
||||
|
||||
def refresh(self,
|
||||
pairlist: List[Tuple[str, str]],
|
||||
|
@ -116,3 +118,17 @@ class DataProvider:
|
|||
can be "live", "dry-run", "backtest", "edgecli", "hyperopt" or "other".
|
||||
"""
|
||||
return RunMode(self._config.get('runmode', RunMode.OTHER))
|
||||
|
||||
def current_whitelist(self) -> List[str]:
|
||||
"""
|
||||
fetch latest available whitelist.
|
||||
|
||||
Useful when you have a large whitelist and need to call each pair as an informative pair.
|
||||
As available pairs does not show whitelist until after informative pairs have been cached.
|
||||
:return: list of pairs in whitelist
|
||||
"""
|
||||
|
||||
if self._pairlists:
|
||||
return self._pairlists.whitelist
|
||||
else:
|
||||
raise OperationalException("Dataprovider was not initialized with a pairlist provider.")
|
||||
|
|
|
@ -71,15 +71,15 @@ class FreqtradeBot:
|
|||
|
||||
self.wallets = Wallets(self.config, self.exchange)
|
||||
|
||||
self.dataprovider = DataProvider(self.config, self.exchange)
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
|
||||
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
|
||||
|
||||
# Attach Dataprovider to Strategy baseclass
|
||||
IStrategy.dp = self.dataprovider
|
||||
# Attach Wallets to Strategy baseclass
|
||||
IStrategy.wallets = self.wallets
|
||||
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
|
||||
# Initializing Edge only if enabled
|
||||
self.edge = Edge(self.config, self.exchange, self.strategy) if \
|
||||
self.config.get('edge', {}).get('enabled', False) else None
|
||||
|
|
|
@ -1,8 +1,11 @@
|
|||
from unittest.mock import MagicMock
|
||||
|
||||
from pandas import DataFrame
|
||||
import pytest
|
||||
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.pairlist.pairlistmanager import PairListManager
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.state import RunMode
|
||||
from tests.conftest import get_patched_exchange
|
||||
|
||||
|
@ -64,8 +67,8 @@ def test_get_pair_dataframe(mocker, default_conf, ohlcv_history):
|
|||
assert dp.get_pair_dataframe("NONESENSE/AAA", ticker_interval).empty
|
||||
|
||||
# Test with and without parameter
|
||||
assert dp.get_pair_dataframe("UNITTEST/BTC",
|
||||
ticker_interval).equals(dp.get_pair_dataframe("UNITTEST/BTC"))
|
||||
assert dp.get_pair_dataframe("UNITTEST/BTC", ticker_interval)\
|
||||
.equals(dp.get_pair_dataframe("UNITTEST/BTC"))
|
||||
|
||||
default_conf["runmode"] = RunMode.LIVE
|
||||
dp = DataProvider(default_conf, exchange)
|
||||
|
@ -90,10 +93,7 @@ def test_available_pairs(mocker, default_conf, ohlcv_history):
|
|||
|
||||
dp = DataProvider(default_conf, exchange)
|
||||
assert len(dp.available_pairs) == 2
|
||||
assert dp.available_pairs == [
|
||||
("XRP/BTC", ticker_interval),
|
||||
("UNITTEST/BTC", ticker_interval),
|
||||
]
|
||||
assert dp.available_pairs == [("XRP/BTC", ticker_interval), ("UNITTEST/BTC", ticker_interval), ]
|
||||
|
||||
|
||||
def test_refresh(mocker, default_conf, ohlcv_history):
|
||||
|
@ -152,3 +152,27 @@ def test_market(mocker, default_conf, markets):
|
|||
|
||||
res = dp.market('UNITTEST/BTC')
|
||||
assert res is None
|
||||
|
||||
|
||||
def test_current_whitelist(mocker, default_conf, tickers):
|
||||
# patch default conf to volumepairlist
|
||||
default_conf['pairlists'][0] = {'method': 'VolumePairList', "number_assets": 5}
|
||||
|
||||
mocker.patch.multiple('freqtrade.exchange.Exchange',
|
||||
exchange_has=MagicMock(return_value=True),
|
||||
get_tickers=tickers)
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
|
||||
pairlist = PairListManager(exchange, default_conf)
|
||||
dp = DataProvider(default_conf, exchange, pairlist)
|
||||
|
||||
# Simulate volumepairs from exchange.
|
||||
pairlist.refresh_pairlist()
|
||||
|
||||
assert dp.current_whitelist() == pairlist._whitelist
|
||||
# The identity of the 2 lists should be identical
|
||||
assert dp.current_whitelist() is pairlist._whitelist
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
dp = DataProvider(default_conf, exchange)
|
||||
dp.current_whitelist()
|
||||
|
|
Loading…
Reference in New Issue
Block a user