Add ability to plot feature importance

This commit is contained in:
initrv 2022-09-16 19:17:41 +03:00
parent 8a236c3c4f
commit b707a6da35
4 changed files with 83 additions and 1 deletions

View File

@ -77,7 +77,8 @@
"indicator_periods_candles": [
10,
20
]
],
"plot_feature_importance": true
},
"data_split_parameters": {
"test_size": 0.33,

View File

@ -20,6 +20,7 @@ from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.utils import plot_feature_importance
from freqtrade.strategy.interface import IStrategy
@ -555,6 +556,14 @@ class IFreqaiModel(ABC):
model = self.train(unfiltered_dataframe, pair, dk)
if self.freqai_info["feature_parameters"].get("plot_feature_importance", False):
plot_feature_importance(
model=model,
feature_names=dk.training_features_list,
pair=pair,
train_dir=dk.data_path
)
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
dk.set_new_model_names(pair, new_trained_timerange)
self.dd.pair_dict[pair]["first"] = False

View File

@ -1,5 +1,13 @@
import logging
from datetime import datetime, timezone
# for plot_feature_importance
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.io as pio
from plotly.subplots import make_subplots
from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider
@ -132,3 +140,66 @@ def get_required_data_timerange(
# trading_mode=config.get("trading_mode", "spot"),
# prepend=config.get("prepend_data", False),
# )
def plot_feature_importance(model, feature_names, pair, train_dir, count_max=25) -> None:
"""
Plot Best and Worst Features by importance for CatBoost model.
Called once per sub-train.
Required: pip install kaleido
Usage: plot_feature_importance(
model=model,
feature_names=dk.training_features_list,
pair=pair,
train_dir=dk.data_path)
"""
# Gather feature importance from model
if "catboost.core" in str(model.__class__):
fi = model.get_feature_importance()
elif "lightgbm.sklearn" in str(model.__class__):
fi = model.feature_importances_
else:
raise NotImplementedError(f"Cannot extract feature importance for {model.__class__}")
# Data preparation
fi_df = pd.DataFrame({
"feature_names": np.array(feature_names),
"feature_importance": np.array(fi)
})
fi_df_top = fi_df.nlargest(count_max, "feature_importance")[::-1]
fi_df_worst = fi_df.nsmallest(count_max, "feature_importance")[::-1]
# Plotting
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.5)
fig.add_trace(
go.Bar(
x=fi_df_top["feature_importance"],
y=fi_df_top["feature_names"],
orientation='h', showlegend=False
), row=1, col=1
)
fig.add_trace(
go.Bar(
x=fi_df_worst["feature_importance"],
y=fi_df_worst["feature_names"],
orientation='h', showlegend=False
), row=1, col=2
)
fig.update_layout(
title_text=f"Best and Worst Features {pair}",
width=1000, height=600
)
# Create directory and save image
model_dir, train_name = str(train_dir).rsplit("/", 1)
fi_dir = Path(f"{model_dir}/feature_importance/{pair.split('/')[0]}")
fi_dir.mkdir(parents=True, exist_ok=True)
pio.write_image(fig, f"{fi_dir}/{train_name}.png", format="png")
logger.info(f"Freqai saving feature importance plot {fi_dir}/{train_name}.png")

View File

@ -2,3 +2,4 @@
-r requirements.txt
plotly==5.10.0
kaleido==0.2.1