mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
add recursive analysis
This commit is contained in:
parent
d2c0e9e438
commit
b77f926cdd
|
@ -20,7 +20,8 @@ from freqtrade.commands.list_commands import (start_list_exchanges, start_list_f
|
|||
start_list_timeframes, start_show_trades)
|
||||
from freqtrade.commands.optimize_commands import (start_backtesting, start_backtesting_show,
|
||||
start_edge, start_hyperopt,
|
||||
start_lookahead_analysis)
|
||||
start_lookahead_analysis,
|
||||
start_recursive_analysis)
|
||||
from freqtrade.commands.pairlist_commands import start_test_pairlist
|
||||
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit
|
||||
from freqtrade.commands.strategy_utils_commands import start_strategy_update
|
||||
|
|
|
@ -122,6 +122,8 @@ ARGS_LOOKAHEAD_ANALYSIS = [
|
|||
a for a in ARGS_BACKTEST if a not in ("position_stacking", "use_max_market_positions", 'cache')
|
||||
] + ["minimum_trade_amount", "targeted_trade_amount", "lookahead_analysis_exportfilename"]
|
||||
|
||||
ARGS_RECURSIVE_ANALYSIS = ["timeframe", "timerange", "dataformat_ohlcv", "pairs", "startup_candle"]
|
||||
|
||||
|
||||
class Arguments:
|
||||
"""
|
||||
|
@ -206,7 +208,7 @@ class Arguments:
|
|||
start_list_strategies, start_list_timeframes,
|
||||
start_lookahead_analysis, start_new_config,
|
||||
start_new_strategy, start_plot_dataframe, start_plot_profit,
|
||||
start_show_trades, start_strategy_update,
|
||||
start_recursive_analysis, start_show_trades, start_strategy_update,
|
||||
start_test_pairlist, start_trading, start_webserver)
|
||||
|
||||
subparsers = self.parser.add_subparsers(dest='command',
|
||||
|
@ -467,3 +469,14 @@ class Arguments:
|
|||
|
||||
self._build_args(optionlist=ARGS_LOOKAHEAD_ANALYSIS,
|
||||
parser=lookahead_analayis_cmd)
|
||||
|
||||
# Add recursive_analysis subcommand
|
||||
recursive_analayis_cmd = subparsers.add_parser(
|
||||
'recursive-analysis',
|
||||
help="Check for potential look ahead bias.",
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
|
||||
recursive_analayis_cmd.set_defaults(func=start_recursive_analysis)
|
||||
|
||||
self._build_args(optionlist=ARGS_RECURSIVE_ANALYSIS,
|
||||
parser=recursive_analayis_cmd)
|
||||
|
|
|
@ -144,3 +144,15 @@ def start_lookahead_analysis(args: Dict[str, Any]) -> None:
|
|||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
LookaheadAnalysisSubFunctions.start(config)
|
||||
|
||||
|
||||
def start_recursive_analysis(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Start the backtest recursive tester script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
from freqtrade.optimize.recursive_analysis_helpers import RecursiveAnalysisSubFunctions
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
RecursiveAnalysisSubFunctions.start(config)
|
||||
|
|
236
freqtrade/optimize/recursive_analysis.py
Normal file
236
freqtrade/optimize/recursive_analysis.py
Normal file
|
@ -0,0 +1,236 @@
|
|||
import logging
|
||||
import shutil
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.loggers.set_log_levels import (reduce_verbosity_for_bias_tester,
|
||||
restore_verbosity_for_bias_tester)
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class VarHolder:
|
||||
timerange: TimeRange
|
||||
data: DataFrame
|
||||
indicators: Dict[str, DataFrame]
|
||||
from_dt: datetime
|
||||
to_dt: datetime
|
||||
timeframe: str
|
||||
startup_candle: int
|
||||
|
||||
class RecursiveAnalysis:
|
||||
|
||||
def __init__(self, config: Dict[str, Any], strategy_obj: Dict):
|
||||
self.failed_bias_check = True
|
||||
self.full_varHolder = VarHolder()
|
||||
self.partial_varHolder_array = []
|
||||
self.partial_varHolder_lookahead_array = []
|
||||
|
||||
self.entry_varHolders: List[VarHolder] = []
|
||||
self.exit_varHolders: List[VarHolder] = []
|
||||
self.exchange: Optional[Any] = None
|
||||
|
||||
# pull variables the scope of the recursive_analysis-instance
|
||||
self.local_config = deepcopy(config)
|
||||
self.local_config['strategy'] = strategy_obj['name']
|
||||
self._startup_candle = config.get('startup_candle', [199, 399, 499, 999, 1999])
|
||||
self.strategy_obj = strategy_obj
|
||||
self.dict_recursive = dict()
|
||||
|
||||
@staticmethod
|
||||
def dt_to_timestamp(dt: datetime):
|
||||
timestamp = int(dt.replace(tzinfo=timezone.utc).timestamp())
|
||||
return timestamp
|
||||
|
||||
# For recursive bias check
|
||||
# analyzes two data frames with processed indicators and shows differences between them.
|
||||
def analyze_indicators(self):
|
||||
|
||||
pair_to_check = self.local_config['pairs'][0]
|
||||
logger.info(f"Start checking for recursive bias")
|
||||
|
||||
# check and report signals
|
||||
base_last_row = self.full_varHolder.indicators[pair_to_check].iloc[-1]
|
||||
base_timerange = self.full_varHolder.from_dt.strftime('%Y-%m-%dT%H:%M:%S') + "-" + self.full_varHolder.to_dt.strftime('%Y-%m-%dT%H:%M:%S')
|
||||
|
||||
for part in self.partial_varHolder_array:
|
||||
part_last_row = part.indicators[pair_to_check].iloc[-1]
|
||||
part_timerange = part.from_dt.strftime('%Y-%m-%dT%H:%M:%S') + "-" + part.to_dt.strftime('%Y-%m-%dT%H:%M:%S')
|
||||
|
||||
logger.info(f"Comparing last row of {base_timerange} backtest")
|
||||
logger.info(f"vs {part_timerange} with {part.startup_candle} startup candle")
|
||||
|
||||
compare_df = base_last_row.compare(part_last_row)
|
||||
if compare_df.shape[0] > 0:
|
||||
# print(compare_df)
|
||||
for col_name, values in compare_df.items():
|
||||
# print(col_name)
|
||||
if 'other' == col_name:
|
||||
continue
|
||||
indicators = values.index
|
||||
|
||||
for indicator in indicators:
|
||||
if(indicator not in self.dict_recursive):
|
||||
self.dict_recursive[indicator] = {}
|
||||
|
||||
values_diff = compare_df.loc[indicator]
|
||||
values_diff_self = values_diff.loc['self']
|
||||
values_diff_other = values_diff.loc['other']
|
||||
difference = (values_diff_other - values_diff_self) / values_diff_self * 100
|
||||
|
||||
self.dict_recursive[indicator][part.startup_candle] = "{:.3f}%".format(difference)
|
||||
|
||||
# logger.info(f"=> found difference in indicator "
|
||||
# f"{indicator}, with difference of "
|
||||
# "{:.8f}%".format(difference))
|
||||
|
||||
else:
|
||||
logger.info("No difference found. Stop the process.")
|
||||
break
|
||||
|
||||
# For lookahead bias check
|
||||
# analyzes two data frames with processed indicators and shows differences between them.
|
||||
def analyze_indicators_lookahead(self):
|
||||
|
||||
pair_to_check = self.local_config['pairs'][0]
|
||||
logger.info(f"Start checking for lookahead bias")
|
||||
|
||||
# check and report signals
|
||||
# base_last_row = self.full_varHolder.indicators[pair_to_check].iloc[-1]
|
||||
# base_timerange = self.full_varHolder.from_dt.strftime('%Y-%m-%dT%H:%M:%S') + "-" + self.full_varHolder.to_dt.strftime('%Y-%m-%dT%H:%M:%S')
|
||||
|
||||
part = self.partial_varHolder_lookahead_array[0]
|
||||
part_last_row = part.indicators[pair_to_check].iloc[-1]
|
||||
date_to_check = part_last_row['date']
|
||||
base_row_to_check = self.full_varHolder.indicators[pair_to_check].loc[(self.full_varHolder.indicators[pair_to_check]['date'] == date_to_check)].iloc[-1]
|
||||
|
||||
check_time = part.to_dt.strftime('%Y-%m-%dT%H:%M:%S')
|
||||
|
||||
logger.info(f"Check indicators at {check_time}")
|
||||
# logger.info(f"vs {part_timerange} with {part.startup_candle} startup candle")
|
||||
|
||||
compare_df = base_row_to_check.compare(part_last_row)
|
||||
if compare_df.shape[0] > 0:
|
||||
# print(compare_df)
|
||||
for col_name, values in compare_df.items():
|
||||
# print(col_name)
|
||||
if 'other' == col_name:
|
||||
continue
|
||||
indicators = values.index
|
||||
|
||||
for indicator in indicators:
|
||||
logger.info(f"=> found lookahead in indicator {indicator}")
|
||||
# logger.info("base value {:.5f}".format(values_diff_self))
|
||||
# logger.info("part value {:.5f}".format(values_diff_other))
|
||||
|
||||
else:
|
||||
logger.info("No lookahead bias found. Stop the process.")
|
||||
|
||||
def prepare_data(self, varholder: VarHolder, pairs_to_load: List[DataFrame]):
|
||||
|
||||
if 'freqai' in self.local_config and 'identifier' in self.local_config['freqai']:
|
||||
# purge previous data if the freqai model is defined
|
||||
# (to be sure nothing is carried over from older backtests)
|
||||
path_to_current_identifier = (
|
||||
Path(f"{self.local_config['user_data_dir']}/models/"
|
||||
f"{self.local_config['freqai']['identifier']}").resolve())
|
||||
# remove folder and its contents
|
||||
if Path.exists(path_to_current_identifier):
|
||||
shutil.rmtree(path_to_current_identifier)
|
||||
|
||||
prepare_data_config = deepcopy(self.local_config)
|
||||
prepare_data_config['timerange'] = (str(self.dt_to_timestamp(varholder.from_dt)) + "-" +
|
||||
str(self.dt_to_timestamp(varholder.to_dt)))
|
||||
prepare_data_config['exchange']['pair_whitelist'] = pairs_to_load
|
||||
|
||||
backtesting = Backtesting(prepare_data_config, self.exchange)
|
||||
self.exchange = backtesting.exchange
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
|
||||
varholder.data, varholder.timerange = backtesting.load_bt_data()
|
||||
backtesting.load_bt_data_detail()
|
||||
varholder.timeframe = backtesting.timeframe
|
||||
|
||||
varholder.indicators = backtesting.strategy.advise_all_indicators(varholder.data)
|
||||
|
||||
def fill_full_varholder(self):
|
||||
self.full_varHolder = VarHolder()
|
||||
|
||||
# define datetime in human-readable format
|
||||
parsed_timerange = TimeRange.parse_timerange(self.local_config['timerange'])
|
||||
|
||||
if parsed_timerange.startdt is None:
|
||||
self.full_varHolder.from_dt = datetime.fromtimestamp(0, tz=timezone.utc)
|
||||
else:
|
||||
self.full_varHolder.from_dt = parsed_timerange.startdt
|
||||
|
||||
if parsed_timerange.stopdt is None:
|
||||
self.full_varHolder.to_dt = datetime.utcnow()
|
||||
else:
|
||||
self.full_varHolder.to_dt = parsed_timerange.stopdt
|
||||
|
||||
self.prepare_data(self.full_varHolder, self.local_config['pairs'])
|
||||
|
||||
def fill_partial_varholder(self, start_date, startup_candle):
|
||||
partial_varHolder = VarHolder()
|
||||
|
||||
partial_varHolder.from_dt = start_date
|
||||
partial_varHolder.to_dt = self.full_varHolder.to_dt
|
||||
partial_varHolder.startup_candle = startup_candle
|
||||
|
||||
self.local_config['startup_candle_count'] = startup_candle
|
||||
|
||||
self.prepare_data(partial_varHolder, self.local_config['pairs'])
|
||||
|
||||
self.partial_varHolder_array.append(partial_varHolder)
|
||||
|
||||
def fill_partial_varholder_lookahead(self, end_date):
|
||||
partial_varHolder = VarHolder()
|
||||
|
||||
partial_varHolder.from_dt = self.full_varHolder.from_dt
|
||||
partial_varHolder.to_dt = end_date
|
||||
# partial_varHolder.startup_candle = startup_candle
|
||||
|
||||
# self.local_config['startup_candle_count'] = startup_candle
|
||||
|
||||
self.prepare_data(partial_varHolder, self.local_config['pairs'])
|
||||
|
||||
self.partial_varHolder_lookahead_array.append(partial_varHolder)
|
||||
|
||||
def start(self) -> None:
|
||||
|
||||
# first make a single backtest
|
||||
self.fill_full_varholder()
|
||||
|
||||
reduce_verbosity_for_bias_tester()
|
||||
|
||||
start_date_full = self.full_varHolder.from_dt
|
||||
end_date_full = self.full_varHolder.to_dt
|
||||
|
||||
timeframe_minutes = timeframe_to_minutes(self.full_varHolder.timeframe)
|
||||
|
||||
end_date_partial = start_date_full + timedelta(minutes=int(timeframe_minutes * 10))
|
||||
|
||||
self.fill_partial_varholder_lookahead(end_date_partial)
|
||||
|
||||
# restore_verbosity_for_bias_tester()
|
||||
|
||||
start_date_partial = end_date_full - timedelta(minutes=int(timeframe_minutes))
|
||||
|
||||
for startup_candle in self._startup_candle:
|
||||
self.fill_partial_varholder(start_date_partial, int(startup_candle))
|
||||
|
||||
# Restore verbosity, so it's not too quiet for the next strategy
|
||||
restore_verbosity_for_bias_tester()
|
||||
|
||||
self.analyze_indicators()
|
||||
self.analyze_indicators_lookahead()
|
182
freqtrade/optimize/recursive_analysis_helpers.py
Normal file
182
freqtrade/optimize/recursive_analysis_helpers.py
Normal file
|
@ -0,0 +1,182 @@
|
|||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.optimize.recursive_analysis import RecursiveAnalysis
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RecursiveAnalysisSubFunctions:
|
||||
|
||||
@staticmethod
|
||||
def text_table_recursive_analysis_instances(
|
||||
config: Dict[str, Any],
|
||||
recursive_instances: List[RecursiveAnalysis]):
|
||||
startups = recursive_instances[0]._startup_candle
|
||||
headers = ['strategy', 'indicators']
|
||||
for candle in startups:
|
||||
headers.append(candle)
|
||||
|
||||
data = []
|
||||
for inst in recursive_instances:
|
||||
if len(inst.dict_recursive) > 0:
|
||||
for indicator, values in inst.dict_recursive.items():
|
||||
temp_data = [inst.strategy_obj['name'], indicator]
|
||||
for candle in startups:
|
||||
temp_data.append(values.get(int(candle), '-'))
|
||||
data.append(temp_data)
|
||||
|
||||
from tabulate import tabulate
|
||||
table = tabulate(data, headers=headers, tablefmt="orgtbl")
|
||||
print(table)
|
||||
return table, headers, data
|
||||
|
||||
@staticmethod
|
||||
def export_to_csv(config: Dict[str, Any], lookahead_analysis: List[RecursiveAnalysis]):
|
||||
def add_or_update_row(df, row_data):
|
||||
if (
|
||||
(df['filename'] == row_data['filename']) &
|
||||
(df['strategy'] == row_data['strategy'])
|
||||
).any():
|
||||
# Update existing row
|
||||
pd_series = pd.DataFrame([row_data])
|
||||
df.loc[
|
||||
(df['filename'] == row_data['filename']) &
|
||||
(df['strategy'] == row_data['strategy'])
|
||||
] = pd_series
|
||||
else:
|
||||
# Add new row
|
||||
df = pd.concat([df, pd.DataFrame([row_data], columns=df.columns)])
|
||||
|
||||
return df
|
||||
|
||||
if Path(config['lookahead_analysis_exportfilename']).exists():
|
||||
# Read CSV file into a pandas dataframe
|
||||
csv_df = pd.read_csv(config['lookahead_analysis_exportfilename'])
|
||||
else:
|
||||
# Create a new empty DataFrame with the desired column names and set the index
|
||||
csv_df = pd.DataFrame(columns=[
|
||||
'filename', 'strategy', 'has_bias', 'total_signals',
|
||||
'biased_entry_signals', 'biased_exit_signals', 'biased_indicators'
|
||||
],
|
||||
index=None)
|
||||
|
||||
for inst in lookahead_analysis:
|
||||
# only update if
|
||||
if (inst.current_analysis.total_signals > config['minimum_trade_amount']
|
||||
and inst.failed_bias_check is not True):
|
||||
new_row_data = {'filename': inst.strategy_obj['location'].parts[-1],
|
||||
'strategy': inst.strategy_obj['name'],
|
||||
'has_bias': inst.current_analysis.has_bias,
|
||||
'total_signals':
|
||||
int(inst.current_analysis.total_signals),
|
||||
'biased_entry_signals':
|
||||
int(inst.current_analysis.false_entry_signals),
|
||||
'biased_exit_signals':
|
||||
int(inst.current_analysis.false_exit_signals),
|
||||
'biased_indicators':
|
||||
",".join(inst.current_analysis.false_indicators)}
|
||||
csv_df = add_or_update_row(csv_df, new_row_data)
|
||||
|
||||
# Fill NaN values with a default value (e.g., 0)
|
||||
csv_df['total_signals'] = csv_df['total_signals'].fillna(0)
|
||||
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].fillna(0)
|
||||
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].fillna(0)
|
||||
|
||||
# Convert columns to integers
|
||||
csv_df['total_signals'] = csv_df['total_signals'].astype(int)
|
||||
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].astype(int)
|
||||
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].astype(int)
|
||||
|
||||
logger.info(f"saving {config['lookahead_analysis_exportfilename']}")
|
||||
csv_df.to_csv(config['lookahead_analysis_exportfilename'], index=False)
|
||||
|
||||
@staticmethod
|
||||
def calculate_config_overrides(config: Config):
|
||||
if config['targeted_trade_amount'] < config['minimum_trade_amount']:
|
||||
# this combo doesn't make any sense.
|
||||
raise OperationalException(
|
||||
"Targeted trade amount can't be smaller than minimum trade amount."
|
||||
)
|
||||
if len(config['pairs']) > config['max_open_trades']:
|
||||
logger.info('Max_open_trades were less than amount of pairs. '
|
||||
'Set max_open_trades to amount of pairs just to avoid false positives.')
|
||||
config['max_open_trades'] = len(config['pairs'])
|
||||
|
||||
min_dry_run_wallet = 1000000000
|
||||
if config['dry_run_wallet'] < min_dry_run_wallet:
|
||||
logger.info('Dry run wallet was not set to 1 billion, pushing it up there '
|
||||
'just to avoid false positives')
|
||||
config['dry_run_wallet'] = min_dry_run_wallet
|
||||
|
||||
# enforce cache to be 'none', shift it to 'none' if not already
|
||||
# (since the default value is 'day')
|
||||
if config.get('backtest_cache') is None:
|
||||
config['backtest_cache'] = 'none'
|
||||
elif config['backtest_cache'] != 'none':
|
||||
logger.info(f"backtest_cache = "
|
||||
f"{config['backtest_cache']} detected. "
|
||||
f"Inside lookahead-analysis it is enforced to be 'none'. "
|
||||
f"Changed it to 'none'")
|
||||
config['backtest_cache'] = 'none'
|
||||
return config
|
||||
|
||||
@staticmethod
|
||||
def initialize_single_recursive_analysis(config: Config, strategy_obj: Dict[str, Any]):
|
||||
|
||||
logger.info(f"Recursive test of {Path(strategy_obj['location']).name} started.")
|
||||
start = time.perf_counter()
|
||||
current_instance = RecursiveAnalysis(config, strategy_obj)
|
||||
current_instance.start()
|
||||
elapsed = time.perf_counter() - start
|
||||
logger.info(f"Checking recursive and lookahead bias of indicators "
|
||||
f"of {Path(strategy_obj['location']).name} "
|
||||
f"took {elapsed:.0f} seconds.")
|
||||
return current_instance
|
||||
|
||||
@staticmethod
|
||||
def start(config: Config):
|
||||
config = RecursiveAnalysisSubFunctions.calculate_config_overrides(config)
|
||||
|
||||
strategy_objs = StrategyResolver.search_all_objects(
|
||||
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
|
||||
|
||||
RecursiveAnalysis_instances = []
|
||||
|
||||
# unify --strategy and --strategy_list to one list
|
||||
if not (strategy_list := config.get('strategy_list', [])):
|
||||
if config.get('strategy') is None:
|
||||
raise OperationalException(
|
||||
"No Strategy specified. Please specify a strategy via --strategy or "
|
||||
"--strategy_list"
|
||||
)
|
||||
strategy_list = [config['strategy']]
|
||||
|
||||
# check if strategies can be properly loaded, only check them if they can be.
|
||||
for strat in strategy_list:
|
||||
for strategy_obj in strategy_objs:
|
||||
if strategy_obj['name'] == strat and strategy_obj not in strategy_list:
|
||||
RecursiveAnalysis_instances.append(
|
||||
RecursiveAnalysisSubFunctions.initialize_single_recursive_analysis(
|
||||
config, strategy_obj))
|
||||
break
|
||||
|
||||
# report the results
|
||||
if RecursiveAnalysis_instances:
|
||||
RecursiveAnalysisSubFunctions.text_table_recursive_analysis_instances(
|
||||
config, RecursiveAnalysis_instances)
|
||||
if config.get('lookahead_analysis_exportfilename') is not None:
|
||||
RecursiveAnalysisSubFunctions.export_to_csv(config, RecursiveAnalysis_instances)
|
||||
else:
|
||||
logger.error("There were no strategies specified neither through "
|
||||
"--strategy nor through "
|
||||
"--strategy_list "
|
||||
"or timeframe was not specified.")
|
Loading…
Reference in New Issue
Block a user