mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
download data homogeneously across timeframes
This commit is contained in:
parent
e7261cf515
commit
bb3523f383
|
@ -1,17 +1,22 @@
|
||||||
from freqtrade.data.dataprovider import DataProvider
|
import logging
|
||||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
|
||||||
from freqtrade.exchange.exchange import market_is_active
|
|
||||||
from freqtrade.exchange import timeframe_to_seconds
|
|
||||||
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
|
||||||
from datetime import datetime, timezone
|
from datetime import datetime, timezone
|
||||||
from freqtrade.exceptions import OperationalException
|
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
|
from freqtrade.data.dataprovider import DataProvider
|
||||||
|
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
||||||
|
from freqtrade.exceptions import OperationalException
|
||||||
|
from freqtrade.exchange import timeframe_to_seconds
|
||||||
|
from freqtrade.exchange.exchange import market_is_active
|
||||||
|
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
|
def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
|
||||||
"""
|
"""
|
||||||
Called only once upon start of bot to download the necessary data for
|
Called only once upon start of bot to download the necessary data for
|
||||||
populating indicators and training a FreqAI model.
|
populating indicators and training the model.
|
||||||
:param timerange: TimeRange = The full data timerange for populating the indicators
|
:param timerange: TimeRange = The full data timerange for populating the indicators
|
||||||
and training the model.
|
and training the model.
|
||||||
:param dp: DataProvider instance attached to the strategy
|
:param dp: DataProvider instance attached to the strategy
|
||||||
|
@ -26,31 +31,108 @@ def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
|
||||||
|
|
||||||
all_pairs = dynamic_expand_pairlist(config, markets)
|
all_pairs = dynamic_expand_pairlist(config, markets)
|
||||||
|
|
||||||
|
timerange = get_required_data_timerange(config)
|
||||||
|
|
||||||
|
new_pairs_days = int((timerange.stopts - timerange.startts) / 86400)
|
||||||
if not dp._exchange:
|
if not dp._exchange:
|
||||||
# Not realistic - this is only called in live mode.
|
# Not realistic - this is only called in live mode.
|
||||||
raise OperationalException("Dataprovider did not have an exchange attached.")
|
raise OperationalException("Dataprovider did not have an exchange attached.")
|
||||||
|
refresh_backtest_ohlcv_data(
|
||||||
|
dp._exchange,
|
||||||
|
pairs=all_pairs,
|
||||||
|
timeframes=config["freqai"]["feature_parameters"].get("include_timeframes"),
|
||||||
|
datadir=config["datadir"],
|
||||||
|
timerange=timerange,
|
||||||
|
new_pairs_days=new_pairs_days,
|
||||||
|
erase=False,
|
||||||
|
data_format=config.get("dataformat_ohlcv", "json"),
|
||||||
|
trading_mode=config.get("trading_mode", "spot"),
|
||||||
|
prepend=config.get("prepend_data", False),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_required_data_timerange(
|
||||||
|
config: dict
|
||||||
|
) -> TimeRange:
|
||||||
|
"""
|
||||||
|
Used to compute the required data download time range
|
||||||
|
for auto data-download in FreqAI
|
||||||
|
"""
|
||||||
time = datetime.now(tz=timezone.utc).timestamp()
|
time = datetime.now(tz=timezone.utc).timestamp()
|
||||||
|
data_load_timerange = TimeRange()
|
||||||
|
|
||||||
for tf in config["freqai"]["feature_parameters"].get("include_timeframes"):
|
timeframes = config["freqai"]["feature_parameters"].get("include_timeframes")
|
||||||
timerange = TimeRange()
|
|
||||||
timerange.startts = int(time)
|
max_tf_seconds = 0
|
||||||
timerange.stopts = int(time)
|
for tf in timeframes:
|
||||||
startup_candles = dp.get_required_startup(str(tf))
|
secs = timeframe_to_seconds(tf)
|
||||||
tf_seconds = timeframe_to_seconds(str(tf))
|
if secs > max_tf_seconds:
|
||||||
timerange.subtract_start(tf_seconds * startup_candles)
|
max_tf_seconds = secs
|
||||||
new_pairs_days = int((timerange.stopts - timerange.startts) / 86400)
|
|
||||||
# FIXME: now that we are looping on `refresh_backtest_ohlcv_data`, the function
|
startup_candles = config.get('startup_candle_count', 0)
|
||||||
# redownloads the funding rate for each pair.
|
indicator_periods = config["freqai"]["feature_parameters"]["indicator_periods_candles"]
|
||||||
refresh_backtest_ohlcv_data(
|
|
||||||
dp._exchange,
|
# factor the max_period as a factor of safety.
|
||||||
pairs=all_pairs,
|
max_period = int(max(startup_candles, max(indicator_periods)) * 1.5)
|
||||||
timeframes=[tf],
|
config['startup_candle_count'] = max_period
|
||||||
datadir=config["datadir"],
|
logger.info(f'FreqAI auto-downloader using {max_period} startup candles.')
|
||||||
timerange=timerange,
|
|
||||||
new_pairs_days=new_pairs_days,
|
additional_seconds = max_period * max_tf_seconds
|
||||||
erase=False,
|
|
||||||
data_format=config.get("dataformat_ohlcv", "json"),
|
data_load_timerange.startts = int(
|
||||||
trading_mode=config.get("trading_mode", "spot"),
|
time
|
||||||
prepend=config.get("prepend_data", False),
|
- config["freqai"].get("train_period_days", 0) * 86400
|
||||||
)
|
- additional_seconds
|
||||||
|
)
|
||||||
|
data_load_timerange.stopts = int(time)
|
||||||
|
|
||||||
|
return data_load_timerange
|
||||||
|
|
||||||
|
|
||||||
|
# Keep below for when we wish to download heterogeneously lengthed data for FreqAI.
|
||||||
|
# def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
|
||||||
|
# """
|
||||||
|
# Called only once upon start of bot to download the necessary data for
|
||||||
|
# populating indicators and training a FreqAI model.
|
||||||
|
# :param timerange: TimeRange = The full data timerange for populating the indicators
|
||||||
|
# and training the model.
|
||||||
|
# :param dp: DataProvider instance attached to the strategy
|
||||||
|
# """
|
||||||
|
|
||||||
|
# if dp._exchange is not None:
|
||||||
|
# markets = [p for p, m in dp._exchange.markets.items() if market_is_active(m)
|
||||||
|
# or config.get('include_inactive')]
|
||||||
|
# else:
|
||||||
|
# # This should not occur:
|
||||||
|
# raise OperationalException('No exchange object found.')
|
||||||
|
|
||||||
|
# all_pairs = dynamic_expand_pairlist(config, markets)
|
||||||
|
|
||||||
|
# if not dp._exchange:
|
||||||
|
# # Not realistic - this is only called in live mode.
|
||||||
|
# raise OperationalException("Dataprovider did not have an exchange attached.")
|
||||||
|
|
||||||
|
# time = datetime.now(tz=timezone.utc).timestamp()
|
||||||
|
|
||||||
|
# for tf in config["freqai"]["feature_parameters"].get("include_timeframes"):
|
||||||
|
# timerange = TimeRange()
|
||||||
|
# timerange.startts = int(time)
|
||||||
|
# timerange.stopts = int(time)
|
||||||
|
# startup_candles = dp.get_required_startup(str(tf))
|
||||||
|
# tf_seconds = timeframe_to_seconds(str(tf))
|
||||||
|
# timerange.subtract_start(tf_seconds * startup_candles)
|
||||||
|
# new_pairs_days = int((timerange.stopts - timerange.startts) / 86400)
|
||||||
|
# # FIXME: now that we are looping on `refresh_backtest_ohlcv_data`, the function
|
||||||
|
# # redownloads the funding rate for each pair.
|
||||||
|
# refresh_backtest_ohlcv_data(
|
||||||
|
# dp._exchange,
|
||||||
|
# pairs=all_pairs,
|
||||||
|
# timeframes=[tf],
|
||||||
|
# datadir=config["datadir"],
|
||||||
|
# timerange=timerange,
|
||||||
|
# new_pairs_days=new_pairs_days,
|
||||||
|
# erase=False,
|
||||||
|
# data_format=config.get("dataformat_ohlcv", "json"),
|
||||||
|
# trading_mode=config.get("trading_mode", "spot"),
|
||||||
|
# prepend=config.get("prepend_data", False),
|
||||||
|
# )
|
||||||
|
|
|
@ -157,12 +157,10 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||||
if self.config.get('runmode') in (RunMode.DRY_RUN, RunMode.LIVE):
|
if self.config.get('runmode') in (RunMode.DRY_RUN, RunMode.LIVE):
|
||||||
logger.info(
|
logger.info(
|
||||||
"Downloading all training data for all pairs in whitelist and "
|
"Downloading all training data for all pairs in whitelist and "
|
||||||
"corr_pairlist, this may take a while if you do not have the "
|
"corr_pairlist, this may take a while if the data is not "
|
||||||
"data saved"
|
"already on disk."
|
||||||
)
|
)
|
||||||
# data_load_timerange = get_required_data_timerange(self.config)
|
|
||||||
download_all_data_for_training(self.dp, self.config)
|
download_all_data_for_training(self.dp, self.config)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Gracious failures if freqAI is disabled but "start" is called.
|
# Gracious failures if freqAI is disabled but "start" is called.
|
||||||
class DummyClass():
|
class DummyClass():
|
||||||
|
|
Loading…
Reference in New Issue
Block a user