mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
improve flexibility of user defined prediction dataframe
This commit is contained in:
parent
fdc82f8302
commit
c172ce1011
|
@ -62,13 +62,13 @@ pip install -r requirements-freqai.txt
|
|||
## Running from the example files
|
||||
|
||||
An example strategy, an example prediction model, and example config can all be found in
|
||||
`freqtrade/templates/FreqaiExampleStrategy.py`, `freqtrade/freqai/prediction_models/LightGBMPredictionModel.py`,
|
||||
`freqtrade/templates/FreqaiExampleStrategy.py`, `freqtrade/freqai/prediction_models/LightGBMRegressor.py`,
|
||||
`config_examples/config_freqai.example.json`, respectively.
|
||||
|
||||
Assuming the user has downloaded the necessary data, Freqai can be executed from these templates with:
|
||||
|
||||
```bash
|
||||
freqtrade backtesting --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel LightGBMPredictionModel --strategy-path freqtrade/templates --timerange 20220101-20220201
|
||||
freqtrade backtesting --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel LightGBMRegressor --strategy-path freqtrade/templates --timerange 20220101-20220201
|
||||
```
|
||||
|
||||
## Configuring the bot
|
||||
|
@ -111,7 +111,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
|
|||
| `test_size` | Fraction of data that should be used for testing instead of training. <br> **Datatype:** positive float below 1.
|
||||
| `shuffle` | Shuffle the training data points during training. Typically for time-series forecasting, this is set to False. **Datatype:** boolean.
|
||||
| | **Model training parameters**
|
||||
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the user selected library. For example, if the user uses `LightGBMPredictionModel`, then this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html). If the user selects a different model, then this dictionary can contain any parameter from that different model. <br> **Datatype:** dictionary.
|
||||
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the user selected library. For example, if the user uses `LightGBMRegressor`, then this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html). If the user selects a different model, then this dictionary can contain any parameter from that different model. <br> **Datatype:** dictionary.
|
||||
| `n_estimators` | A common parameter among regressors which sets the number of boosted trees to fit <br> **Datatype:** integer.
|
||||
| `learning_rate` | A common parameter among regressors which sets the boosting learning rate. <br> **Datatype:** float.
|
||||
| `n_jobs`, `thread_count`, `task_type` | Different libraries use different parameter names to control the number of threads used for parallel processing or whether or not it is a `task_type` of `gpu` or `cpu`. <br> **Datatype:** float.
|
||||
|
@ -356,7 +356,7 @@ and adding this to the `train_period_days`. The units need to be in the base can
|
|||
The freqai training/backtesting module can be executed with the following command:
|
||||
|
||||
```bash
|
||||
freqtrade backtesting --strategy FreqaiExampleStrategy --config config_freqai.example.json --freqaimodel LightGBMPredictionModel --timerange 20210501-20210701
|
||||
freqtrade backtesting --strategy FreqaiExampleStrategy --config config_freqai.example.json --freqaimodel LightGBMRegressor --timerange 20210501-20210701
|
||||
```
|
||||
|
||||
If this command has never been executed with the existing config file, then it will train a new model
|
||||
|
|
|
@ -245,7 +245,7 @@ class FreqaiDataDrawer:
|
|||
logger.info(f'Setting initial FreqUI plots from historical data for {pair}.')
|
||||
|
||||
else:
|
||||
for label in dk.label_list:
|
||||
for label in pred_df.columns:
|
||||
mrv_df[label] = pred_df[label]
|
||||
if mrv_df[label].dtype == object:
|
||||
continue
|
||||
|
@ -278,15 +278,16 @@ class FreqaiDataDrawer:
|
|||
# strat seems to feed us variable sized dataframes - and since we are trying to build our
|
||||
# own return array in the same shape, we need to figure out how the size has changed
|
||||
# and adapt our stored/returned info accordingly.
|
||||
length_difference = len(self.model_return_values[pair]) - len_df
|
||||
i = 0
|
||||
|
||||
if length_difference == 0:
|
||||
i = 1
|
||||
elif length_difference > 0:
|
||||
i = length_difference + 1
|
||||
# length_difference = len(self.model_return_values[pair]) - len_df
|
||||
# i = 0
|
||||
|
||||
df = self.model_return_values[pair] = self.model_return_values[pair].shift(-i)
|
||||
# if length_difference == 0:
|
||||
# i = 1
|
||||
# elif length_difference > 0:
|
||||
# i = length_difference + 1
|
||||
|
||||
df = self.model_return_values[pair] = self.model_return_values[pair].shift(-1)
|
||||
|
||||
if pair in self.historic_predictions:
|
||||
hp_df = self.historic_predictions[pair]
|
||||
|
@ -296,7 +297,8 @@ class FreqaiDataDrawer:
|
|||
hp_df = pd.concat([hp_df, nan_df], ignore_index=True, axis=0)
|
||||
self.historic_predictions[pair] = hp_df[:-1]
|
||||
|
||||
for label in dk.label_list:
|
||||
# incase user adds additional "predictions" e.g. predict_proba output:
|
||||
for label in predictions.columns:
|
||||
df[label].iloc[-1] = predictions[label].iloc[-1]
|
||||
if df[label].dtype == object:
|
||||
continue
|
||||
|
@ -318,11 +320,11 @@ class FreqaiDataDrawer:
|
|||
for key in df.keys():
|
||||
self.historic_predictions[pair][key].iloc[-1] = df[key].iloc[-1]
|
||||
|
||||
if length_difference < 0:
|
||||
prepend_df = pd.DataFrame(
|
||||
np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
|
||||
)
|
||||
df = pd.concat([prepend_df, df], axis=0)
|
||||
# if length_difference < 0:
|
||||
# prepend_df = pd.DataFrame(
|
||||
# np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
|
||||
# )
|
||||
# df = pd.concat([prepend_df, df], axis=0)
|
||||
|
||||
def attach_return_values_to_return_dataframe(
|
||||
self, pair: str, dataframe: DataFrame) -> DataFrame:
|
||||
|
@ -343,7 +345,12 @@ class FreqaiDataDrawer:
|
|||
|
||||
dk.find_features(dataframe)
|
||||
|
||||
for label in dk.label_list:
|
||||
if self.freqai_info.get('predict_proba', []):
|
||||
full_labels = dk.label_list + self.freqai_info['predict_proba']
|
||||
else:
|
||||
full_labels = dk.label_list
|
||||
|
||||
for label in full_labels:
|
||||
dataframe[label] = 0
|
||||
dataframe[f"{label}_mean"] = 0
|
||||
dataframe[f"{label}_std"] = 0
|
||||
|
|
|
@ -342,7 +342,7 @@ class FreqaiDataKitchen:
|
|||
:df: Dataframe of predictions to be denormalized
|
||||
"""
|
||||
|
||||
for label in self.label_list:
|
||||
for label in df.columns:
|
||||
if df[label].dtype == object:
|
||||
continue
|
||||
df[label] = (
|
||||
|
@ -716,14 +716,16 @@ class FreqaiDataKitchen:
|
|||
weights = np.exp(-np.arange(num_weights) / (wfactor * num_weights))[::-1]
|
||||
return weights
|
||||
|
||||
def append_predictions(self, predictions, do_predict, len_dataframe):
|
||||
def append_predictions(self, predictions: DataFrame, do_predict: npt.ArrayLike) -> None:
|
||||
"""
|
||||
Append backtest prediction from current backtest period to all previous periods
|
||||
"""
|
||||
|
||||
append_df = DataFrame()
|
||||
for label in self.label_list:
|
||||
for label in predictions.columns:
|
||||
append_df[label] = predictions[label]
|
||||
if append_df[label].dtype == object:
|
||||
continue
|
||||
append_df[f"{label}_mean"] = self.data["labels_mean"][label]
|
||||
append_df[f"{label}_std"] = self.data["labels_std"][label]
|
||||
|
||||
|
@ -1009,7 +1011,7 @@ class FreqaiDataKitchen:
|
|||
import scipy as spy
|
||||
|
||||
self.data["labels_mean"], self.data["labels_std"] = {}, {}
|
||||
for label in self.label_list:
|
||||
for label in self.data_dictionary["train_labels"].columns:
|
||||
if self.data_dictionary["train_labels"][label].dtype == object:
|
||||
continue
|
||||
f = spy.stats.norm.fit(self.data_dictionary["train_labels"][label])
|
||||
|
|
|
@ -221,7 +221,7 @@ class IFreqaiModel(ABC):
|
|||
|
||||
pred_df, do_preds = self.predict(dataframe_backtest, dk)
|
||||
|
||||
dk.append_predictions(pred_df, do_preds, len(dataframe_backtest))
|
||||
dk.append_predictions(pred_df, do_preds)
|
||||
|
||||
dk.fill_predictions(dataframe)
|
||||
|
||||
|
@ -543,15 +543,17 @@ class IFreqaiModel(ABC):
|
|||
self.dd.historic_predictions[pair] = pred_df
|
||||
hist_preds_df = self.dd.historic_predictions[pair]
|
||||
|
||||
for label in hist_preds_df.columns:
|
||||
if hist_preds_df[label].dtype == object:
|
||||
continue
|
||||
hist_preds_df[f'{label}_mean'] = 0
|
||||
hist_preds_df[f'{label}_std'] = 0
|
||||
|
||||
hist_preds_df['do_predict'] = 0
|
||||
|
||||
if self.freqai_info['feature_parameters'].get('DI_threshold', 0) > 0:
|
||||
hist_preds_df['DI_values'] = 0
|
||||
|
||||
for label in dk.data['labels_mean']:
|
||||
hist_preds_df[f'{label}_mean'] = 0
|
||||
hist_preds_df[f'{label}_std'] = 0
|
||||
|
||||
for return_str in dk.data['extra_returns_per_train']:
|
||||
hist_preds_df[return_str] = 0
|
||||
|
||||
|
|
|
@ -47,7 +47,7 @@ def freqai_conf(default_conf, tmpdir):
|
|||
"indicator_periods_candles": [10],
|
||||
},
|
||||
"data_split_parameters": {"test_size": 0.33, "random_state": 1},
|
||||
"model_training_parameters": {"n_estimators": 100, "verbosity": 0},
|
||||
"model_training_parameters": {"n_estimators": 100},
|
||||
},
|
||||
"config_files": [Path('config_examples', 'config_freqai.example.json')]
|
||||
}
|
||||
|
|
|
@ -74,8 +74,8 @@ def test_train_model_in_series_LightGBMMultiModel(mocker, freqai_conf):
|
|||
def test_train_model_in_series_Catboost(mocker, freqai_conf):
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
freqai_conf.update({"freqaimodel": "CatboostRegressor"})
|
||||
freqai_conf.get('freqai', {}).update(
|
||||
{'model_training_parameters': {"n_estimators": 100, "verbose": 0}})
|
||||
# freqai_conf.get('freqai', {}).update(
|
||||
# {'model_training_parameters': {"n_estimators": 100, "verbose": 0}})
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
|
|
Loading…
Reference in New Issue
Block a user