mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 02:12:01 +00:00
auto populate features based on a prepended % in the strategy (remove feature assignment from config). Update doc/constants/example strategy to reflect change
This commit is contained in:
parent
8664e8f9a3
commit
d1d451c27e
|
@ -56,20 +56,9 @@
|
|||
],
|
||||
"train_period": 30,
|
||||
"backtest_period": 7,
|
||||
"identifier": "new_corrlist",
|
||||
"identifier": "example",
|
||||
"live_trained_timerange": "20220330-20220429",
|
||||
"live_full_backtestrange": "20220302-20220501",
|
||||
"base_features": [
|
||||
"rsi",
|
||||
"close_over_20sma",
|
||||
"relative_volume",
|
||||
"bb_width",
|
||||
"mfi",
|
||||
"roc",
|
||||
"pct-change",
|
||||
"adx",
|
||||
"macd"
|
||||
],
|
||||
"corr_pairlist": [
|
||||
"BTC/USDT",
|
||||
"ETH/USDT",
|
||||
|
|
|
@ -72,11 +72,6 @@ config setup includes:
|
|||
"train_period" : 30,
|
||||
"backtest_period" : 7,
|
||||
"identifier" : "unique-id",
|
||||
"base_features": [
|
||||
"rsi",
|
||||
"mfi",
|
||||
"roc",
|
||||
],
|
||||
"corr_pairlist": [
|
||||
"ETH/USD",
|
||||
"LINK/USD",
|
||||
|
@ -102,11 +97,31 @@ config setup includes:
|
|||
|
||||
### Building the feature set
|
||||
|
||||
Most of these parameters are controlling the feature data set. The `base_features`
|
||||
indicates the basic indicators the user wishes to include in the feature set.
|
||||
The `timeframes` are the timeframes of each base_feature that the user wishes to
|
||||
include in the feature set. In the present case, the user is asking for the
|
||||
`5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, etc. to be included
|
||||
Most of these parameters are controlling the feature data set. Features are added by the user
|
||||
inside the `populate_any_indicators()` method of the strategy by prepending indicators with `%`:
|
||||
|
||||
```python
|
||||
def populate_any_indicators(self, pair, df, tf, informative=None, coin=""):
|
||||
informative['%-''%-' + coin + "rsi"] = ta.RSI(informative, timeperiod=14)
|
||||
informative['%-' + coin + "mfi"] = ta.MFI(informative, timeperiod=25)
|
||||
informative['%-' + coin + "adx"] = ta.ADX(informative, window=20)
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(informative), window=14, stds=2.2)
|
||||
informative[coin + "bb_lowerband"] = bollinger["lower"]
|
||||
informative[coin + "bb_middleband"] = bollinger["mid"]
|
||||
informative[coin + "bb_upperband"] = bollinger["upper"]
|
||||
informative['%-' + coin + "bb_width"] = (
|
||||
informative[coin + "bb_upperband"] - informative[coin + "bb_lowerband"]
|
||||
) / informative[coin + "bb_middleband"]
|
||||
```
|
||||
The user of the present example does not want to pass the `bb_lowerband` as a feature to the model,
|
||||
and has therefore not prepended it with `%`. The user does, however, wish to pass `bb_width` to the
|
||||
model for training/prediction and has therfore prepended it with `%`._
|
||||
|
||||
(Please see the example script located in `freqtrade/templates/FreqaiExampleStrategy.py` for a full example of `populate_any_indicators()`)
|
||||
|
||||
The `timeframes` from the example config above are the timeframes of each `populate_any_indicator()`
|
||||
included metric for inclusion in the feature set. In the present case, the user is asking for the
|
||||
`5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included
|
||||
in the feature set.
|
||||
|
||||
In addition, the user can ask for each of these features to be included from
|
||||
|
|
|
@ -442,7 +442,6 @@ CONF_SCHEMA = {
|
|||
"identifier": {"type": "str", "default": "example"},
|
||||
"live_trained_timerange": {"type": "str"},
|
||||
"live_full_backtestrange": {"type": "str"},
|
||||
"base_features": {"type": "list"},
|
||||
"corr_pairlist": {"type": "list"},
|
||||
"feature_parameters": {
|
||||
"type": "object",
|
||||
|
@ -537,4 +536,4 @@ TradeList = List[List]
|
|||
|
||||
LongShort = Literal['long', 'short']
|
||||
EntryExit = Literal['entry', 'exit']
|
||||
BuySell = Literal['buy', 'sell']
|
||||
BuySell = Literal['buy', 'sell']
|
||||
|
|
|
@ -483,31 +483,38 @@ class FreqaiDataKitchen:
|
|||
|
||||
return
|
||||
|
||||
def build_feature_list(self, config: dict, metadata: dict) -> list:
|
||||
"""
|
||||
Build the list of features that will be used to filter
|
||||
the full dataframe. Feature list is construced from the
|
||||
user configuration file.
|
||||
:params:
|
||||
:config: Canonical freqtrade config file containing all
|
||||
user defined input in config['freqai] dictionary.
|
||||
"""
|
||||
features = []
|
||||
for tf in config["freqai"]["timeframes"]:
|
||||
for ft in config["freqai"]["base_features"]:
|
||||
for n in range(config["freqai"]["feature_parameters"]["shift"] + 1):
|
||||
shift = ""
|
||||
if n > 0:
|
||||
shift = "_shift-" + str(n)
|
||||
features.append(metadata['pair'].split("/")[0] + "-" + ft + shift + "_" + tf)
|
||||
for p in config["freqai"]["corr_pairlist"]:
|
||||
if metadata['pair'] in p:
|
||||
continue # avoid duplicate features
|
||||
features.append(p.split("/")[0] + "-" + ft + shift + "_" + tf)
|
||||
|
||||
# logger.info("number of features %s", len(features))
|
||||
def find_features(self, dataframe: DataFrame) -> list:
|
||||
column_names = dataframe.columns
|
||||
features = [c for c in column_names if '%' in c]
|
||||
assert features, ("Could not find any features!")
|
||||
return features
|
||||
|
||||
# def build_feature_list(self, config: dict, metadata: dict) -> list:
|
||||
# """
|
||||
# SUPERCEDED BY self.find_features()
|
||||
# Build the list of features that will be used to filter
|
||||
# the full dataframe. Feature list is construced from the
|
||||
# user configuration file.
|
||||
# :params:
|
||||
# :config: Canonical freqtrade config file containing all
|
||||
# user defined input in config['freqai] dictionary.
|
||||
# """
|
||||
# features = []
|
||||
# for tf in config["freqai"]["timeframes"]:
|
||||
# for ft in config["freqai"]["base_features"]:
|
||||
# for n in range(config["freqai"]["feature_parameters"]["shift"] + 1):
|
||||
# shift = ""
|
||||
# if n > 0:
|
||||
# shift = "_shift-" + str(n)
|
||||
# features.append(metadata['pair'].split("/")[0] + "-" + ft + shift + "_" + tf)
|
||||
# for p in config["freqai"]["corr_pairlist"]:
|
||||
# if metadata['pair'] in p:
|
||||
# continue # avoid duplicate features
|
||||
# features.append(p.split("/")[0] + "-" + ft + shift + "_" + tf)
|
||||
|
||||
# # logger.info("number of features %s", len(features))
|
||||
# return features
|
||||
|
||||
def check_if_pred_in_training_spaces(self) -> None:
|
||||
"""
|
||||
Compares the distance from each prediction point to each training data
|
||||
|
|
|
@ -53,9 +53,8 @@ class CatboostPredictionModel(IFreqaiModel):
|
|||
logger.info("--------------------Starting training--------------------")
|
||||
|
||||
# create the full feature list based on user config info
|
||||
self.dh.training_features_list = self.dh.build_feature_list(self.config, metadata)
|
||||
self.dh.training_features_list = self.dh.find_features(unfiltered_dataframe)
|
||||
unfiltered_labels = self.make_labels(unfiltered_dataframe)
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = self.dh.filter_features(
|
||||
unfiltered_dataframe,
|
||||
|
@ -127,7 +126,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
|||
|
||||
# logger.info("--------------------Starting prediction--------------------")
|
||||
|
||||
original_feature_list = self.dh.build_feature_list(self.config, metadata)
|
||||
original_feature_list = self.dh.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = self.dh.filter_features(
|
||||
unfiltered_dataframe, original_feature_list, training_filter=False
|
||||
)
|
||||
|
|
|
@ -62,8 +62,11 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
def populate_any_indicators(self, pair, df, tf, informative=None, coin=""):
|
||||
"""
|
||||
Function designed to automatically generate, name and merge features
|
||||
from user indicated timeframes in the configuration file. User can add
|
||||
additional features here, but must follow the naming convention.
|
||||
from user indicated timeframes in the configuration file. User controls the indicators
|
||||
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
||||
(see convention below). I.e. user should not prepend any supporting metrics
|
||||
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
||||
model.
|
||||
:params:
|
||||
:pair: pair to be used as informative
|
||||
:df: strategy dataframe which will receive merges from informatives
|
||||
|
@ -74,49 +77,50 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
if informative is None:
|
||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||
|
||||
informative[coin + "rsi"] = ta.RSI(informative, timeperiod=14)
|
||||
informative[coin + "mfi"] = ta.MFI(informative, timeperiod=25)
|
||||
informative[coin + "adx"] = ta.ADX(informative, window=20)
|
||||
informative['%-' + coin + "rsi"] = ta.RSI(informative, timeperiod=14)
|
||||
informative['%-' + coin + "mfi"] = ta.MFI(informative, timeperiod=25)
|
||||
informative['%-' + coin + "adx"] = ta.ADX(informative, window=20)
|
||||
|
||||
informative[coin + "20sma"] = ta.SMA(informative, timeperiod=20)
|
||||
informative[coin + "21ema"] = ta.EMA(informative, timeperiod=21)
|
||||
informative[coin + "bmsb"] = np.where(
|
||||
informative['%-' + coin + "bmsb"] = np.where(
|
||||
informative[coin + "20sma"].lt(informative[coin + "21ema"]), 1, 0
|
||||
)
|
||||
informative[coin + "close_over_20sma"] = informative["close"] / informative[coin + "20sma"]
|
||||
informative['%-' + coin + "close_over_20sma"] = informative["close"] / informative[
|
||||
coin + "20sma"]
|
||||
|
||||
informative[coin + "mfi"] = ta.MFI(informative, timeperiod=25)
|
||||
informative['%-' + coin + "mfi"] = ta.MFI(informative, timeperiod=25)
|
||||
|
||||
informative[coin + "ema21"] = ta.EMA(informative, timeperiod=21)
|
||||
informative[coin + "sma20"] = ta.SMA(informative, timeperiod=20)
|
||||
stoch = ta.STOCHRSI(informative, 15, 20, 2, 2)
|
||||
informative[coin + "srsi-fk"] = stoch["fastk"]
|
||||
informative[coin + "srsi-fd"] = stoch["fastd"]
|
||||
informative['%-' + coin + "srsi-fk"] = stoch["fastk"]
|
||||
informative['%-' + coin + "srsi-fd"] = stoch["fastd"]
|
||||
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(informative), window=14, stds=2.2)
|
||||
informative[coin + "bb_lowerband"] = bollinger["lower"]
|
||||
informative[coin + "bb_middleband"] = bollinger["mid"]
|
||||
informative[coin + "bb_upperband"] = bollinger["upper"]
|
||||
informative[coin + "bb_width"] = (
|
||||
informative['%-' + coin + "bb_width"] = (
|
||||
informative[coin + "bb_upperband"] - informative[coin + "bb_lowerband"]
|
||||
) / informative[coin + "bb_middleband"]
|
||||
informative[coin + "close-bb_lower"] = (
|
||||
informative['%-' + coin + "close-bb_lower"] = (
|
||||
informative["close"] / informative[coin + "bb_lowerband"]
|
||||
)
|
||||
|
||||
informative[coin + "roc"] = ta.ROC(informative, timeperiod=3)
|
||||
informative[coin + "adx"] = ta.ADX(informative, window=14)
|
||||
informative['%-' + coin + "roc"] = ta.ROC(informative, timeperiod=3)
|
||||
informative['%-' + coin + "adx"] = ta.ADX(informative, window=14)
|
||||
|
||||
macd = ta.MACD(informative)
|
||||
informative[coin + "macd"] = macd["macd"]
|
||||
informative['%-' + coin + "macd"] = macd["macd"]
|
||||
informative[coin + "pct-change"] = informative["close"].pct_change()
|
||||
informative[coin + "relative_volume"] = (
|
||||
informative['%-' + coin + "relative_volume"] = (
|
||||
informative["volume"] / informative["volume"].rolling(10).mean()
|
||||
)
|
||||
|
||||
informative[coin + "pct-change"] = informative["close"].pct_change()
|
||||
|
||||
indicators = [col for col in informative if col.startswith(coin)]
|
||||
indicators = [col for col in informative if col.startswith('%')]
|
||||
|
||||
for n in range(self.freqai_info["feature_parameters"]["shift"] + 1):
|
||||
if n == 0:
|
||||
|
@ -154,7 +158,6 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
pair, dataframe.copy(), tf, coin=pair.split("/")[0] + "-"
|
||||
)
|
||||
|
||||
print('dataframe_built')
|
||||
# the model will return 4 values, its prediction, an indication of whether or not the
|
||||
# prediction should be accepted, the target mean/std values from the labels used during
|
||||
# each training period.
|
||||
|
@ -181,7 +184,6 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# sell_goal = eval('self.'+metadata['pair'].split("/")[0]+'_sell_goal.value')
|
||||
sell_conditions = [
|
||||
(dataframe["prediction"] < dataframe["sell_roi"]) & (dataframe["do_predict"] == 1)
|
||||
]
|
||||
|
|
Loading…
Reference in New Issue
Block a user