mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
Add inlier metric computation
This commit is contained in:
parent
50e2808667
commit
d3cb211283
|
@ -723,6 +723,80 @@ class FreqaiDataKitchen:
|
|||
)
|
||||
|
||||
return
|
||||
|
||||
def compute_inlier_metric(self) -> None:
|
||||
"""
|
||||
|
||||
Compute inlier metric from backwards distance distributions.
|
||||
This metric defines how well features from a timepoint fit
|
||||
into previous timepoints.
|
||||
"""
|
||||
|
||||
import scipy.stats as ss
|
||||
|
||||
nmb_previous_points = self.data['InlierMetric_nmb_points']
|
||||
weibull_percentile = self.data['InlierMetric_weib_perc']
|
||||
|
||||
train_ft_df = self.data_dictionary['train_features']
|
||||
train_ft_df_reindexed = train_ft_df.reindex(
|
||||
index=np.flip(train_ft_df.index)
|
||||
)
|
||||
|
||||
pairwise = pd.DataFrame(
|
||||
np.triu(
|
||||
pairwise_distances(train_ft_df_reindexed, n_jobs=self.thread_count)
|
||||
),
|
||||
columns=train_ft_df_reindexed.index,
|
||||
index=train_ft_df_reindexed.index
|
||||
)
|
||||
pairwise = pairwise.round(5)
|
||||
|
||||
column_labels = [
|
||||
'{}{}'.format('d', i) for i in range(1, nmb_previous_points+1)
|
||||
]
|
||||
distances = pd.DataFrame(
|
||||
columns=column_labels, index=train_ft_df.index
|
||||
)
|
||||
for index in train_ft_df.index[nmb_previous_points]:
|
||||
current_row = pairwise.loc[[index]]
|
||||
current_row_no_zeros = current_row.loc[
|
||||
:, (current_row!=0).any(axis=0)
|
||||
]
|
||||
distances.loc[[index]] = current_row_no_zeros.iloc[
|
||||
:, :nmb_previous_points
|
||||
]
|
||||
distances = distances.replace([np.inf, -np.inf], np.nan)
|
||||
drop_index = pd.isnull(distances).any(1)
|
||||
distances = distances[drop_index==0]
|
||||
|
||||
inliers = pd.DataFrame(index=distances.index)
|
||||
for key in distances.keys():
|
||||
current_distances = distances[key].dropna()
|
||||
fit_params = ss.weibull_min.fit(current_distances)
|
||||
cutoff = ss.weibull_min.ppf(weibull_percentile, *fit_params)
|
||||
is_inlier = np.where(
|
||||
current_distances<=cutoff, 1, 0
|
||||
)
|
||||
df_inlier = pd.DataFrame(
|
||||
{key+'_IsInlier':is_inlier}, index=distances.index
|
||||
)
|
||||
inliers = pd.concat(
|
||||
[inliers, df_inlier], axis=1
|
||||
)
|
||||
|
||||
self.data_dictionary['train_features'] = pd.DataFrame(
|
||||
data=inliers.sum(axis=1)/nmb_previous_points,
|
||||
columns=['inlier_metric'],
|
||||
index = train_ft_df.index
|
||||
)
|
||||
|
||||
percent_outliers = np.round(
|
||||
100*(1-self.data_dictionary['iniler_metric'].sum()/
|
||||
len(train_ft_df.index)), 2
|
||||
)
|
||||
logger.info('{percent_outliers}%% of data points were identified as outliers')
|
||||
|
||||
return None
|
||||
|
||||
def find_features(self, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue
Block a user