Add documentation details.

This commit is contained in:
eSeR1805 2022-05-31 16:17:31 +03:00
parent 096e98a68c
commit de01aaf290
No known key found for this signature in database
GPG Key ID: BA53686259B46936

View File

@ -11,7 +11,7 @@ If you're just getting started, please be familiar with the methods described in
!!! Tip
You can get a strategy template containing all below methods by running `freqtrade new-strategy --strategy MyAwesomeStrategy --template advanced`
## Storing information
## Storing information (Non-Persistent)
Storing information can be accomplished by creating a new dictionary within the strategy class.
@ -40,6 +40,74 @@ class AwesomeStrategy(IStrategy):
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
## Storing information (Persistent)
Storing information can also be performed in a persistent manner. Freqtrade allows storing/retrieving user custom information associated with a specific trade.
Using a trade object handle information can be stored using `trade_obj.set_kval(key='my_key', value=my_value)` and retrieved using `trade_obj.get_kval(key='my_key')`.
Each data entry is associated with a trade and a user supplied key (of type `string`). This means that this can only be used in callbacks that also provide a trade object handle.
For the data to be able to be stored within the database it must be serialized. This is done by converting it to a JSON formatted string.
```python
from freqtrade.persistence import Trade
from datetime import timedelta
class AwesomeStrategy(IStrategy):
def bot_loop_start(self, **kwargs) -> None:
for trade in Trade.get_open_order_trades():
fills = trade.select_filled_orders(trade.entry_side)
if trade.pair == 'ETH/USDT':
trade_entry_type = trade.get_kval(key='entry_type')
if trade_entry_type is None:
trade_entry_type = 'breakout' if 'entry_1' in trade.enter_tag else 'dip'
elif fills > 1:
trade_entry_type = 'buy_up'
trade.set_kval(key='entry_type', value=trade_entry_type)
return super().bot_loop_start(**kwargs)
def adjust_entry_price(self, trade: Trade, order: Optional[Order], pair: str,
current_time: datetime, proposed_rate: float, current_order_rate: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
# Limit orders to use and follow SMA200 as price target for the first 10 minutes since entry trigger for BTC/USDT pair.
if pair == 'BTC/USDT' and entry_tag == 'long_sma200' and side == 'long' and (current_time - timedelta(minutes=10) > trade.open_date_utc and order.filled == 0.0:
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
current_candle = dataframe.iloc[-1].squeeze()
# store information about entry adjustment
existing_count = trade.get_kval(key='num_entry_adjustments')
if not existing_count:
existing_count = 1
else:
existing_count += 1
trade.set_kval(key='num_entry_adjustments', value=existing_count)
# adjust order price
return current_candle['sma_200']
# default: maintain existing order
return current_order_rate
def custom_exit(self, pair: str, trade: Trade, current_time: datetime, current_rate: float, current_profit: float, **kwargs):
entry_adjustment_count = trade.get_kval(key='num_entry_adjustments')
trade_entry_type = trade.get_kval(key='entry_type')
if entry_adjustment_count is None:
if current_profit > 0.01 and (current_time - timedelta(minutes=100) > trade.open_date_utc):
return True, 'exit_1'
else
if entry_adjustment_count > 0 and if current_profit > 0.05:
return True, 'exit_2'
if trade_entry_type == 'breakout' and current_profit > 0.1:
return True, 'exit_3
return False, None
```
!!! Note
It is recommended that simple data types are used `[bool, int, float, str]` to ensure no issues when serializing the data that needs to be stored.
!!! Warning
If supplied data cannot be serialized a warning is logged and the entry for the specified `key` will contain `None` as data.
## Dataframe access
You may access dataframe in various strategy functions by querying it from dataprovider.