merged with develop

This commit is contained in:
Sam Germain 2021-09-19 15:35:54 -06:00
commit ee0ebdf0f2
27 changed files with 798 additions and 444 deletions

View File

@ -165,6 +165,7 @@ Example to remove the first 10 pairs from the pairlist:
```json
"pairlists": [
// ...
{
"method": "OffsetFilter",
"offset": 10
@ -190,6 +191,19 @@ Sorts pairs by past trade performance, as follows:
Trade count is used as a tie breaker.
You can use the `minutes` parameter to only consider performance of the past X minutes (rolling window).
Not defining this parameter (or setting it to 0) will use all-time performance.
```json
"pairlists": [
// ...
{
"method": "PerformanceFilter",
"minutes": 1440 // rolling 24h
}
],
```
!!! Note
`PerformanceFilter` does not support backtesting mode.

View File

@ -288,6 +288,12 @@ Stoploss values returned from `custom_stoploss()` always specify a percentage re
The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`.
### Calculating stoploss percentage from absolute price
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss at specified absolute price level, we need to use `stop_rate` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
The helper function [`stoploss_from_absolute()`](strategy-customization.md#stoploss_from_absolute) can be used to convert from an absolute price, to a current price relative stop which can be returned from `custom_stoploss()`.
#### Stepped stoploss
Instead of continuously trailing behind the current price, this example sets fixed stoploss price levels based on the current profit.

View File

@ -639,6 +639,167 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation.
!!! Note
Providing invalid input to `stoploss_from_open()` may produce "CustomStoploss function did not return valid stoploss" warnings.
This may happen if `current_profit` parameter is below specified `open_relative_stop`. Such situations may arise when closing trade
is blocked by `confirm_trade_exit()` method. Warnings can be solved by never blocking stop loss sells by checking `sell_reason` in
`confirm_trade_exit()`, or by using `return stoploss_from_open(...) or 1` idiom, which will request to not change stop loss when
`current_profit < open_relative_stop`.
### *stoploss_from_absolute()*
In some situations it may be confusing to deal with stops relative to current rate. Instead, you may define a stoploss level using an absolute price.
??? Example "Returning a stoploss using absolute price from the custom stoploss function"
If we want to trail a stop price at 2xATR below current proce we can call `stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate)`.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, stoploss_from_open
class AwesomeStrategy(IStrategy):
use_custom_stoploss = True
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['atr'] = ta.ATR(dataframe, timeperiod=14)
return dataframe
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
candle = dataframe.iloc[-1].squeeze()
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate)
```
### *@informative()*
``` python
def informative(timeframe: str, asset: str = '',
fmt: Optional[Union[str, Callable[[KwArg(str)], str]]] = None,
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
"""
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
define informative indicators.
Example usage:
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
current pair.
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
specified, defaults to:
* {base}_{quote}_{column}_{timeframe} if asset is specified.
* {column}_{timeframe} if asset is not specified.
Format string supports these format variables:
* {asset} - full name of the asset, for example 'BTC/USDT'.
* {base} - base currency in lower case, for example 'eth'.
* {BASE} - same as {base}, except in upper case.
* {quote} - quote currency in lower case, for example 'usdt'.
* {QUOTE} - same as {quote}, except in upper case.
* {column} - name of dataframe column.
* {timeframe} - timeframe of informative dataframe.
:param ffill: ffill dataframe after merging informative pair.
"""
```
In most common case it is possible to easily define informative pairs by using a decorator. All decorated `populate_indicators_*` methods run in isolation,
not having access to data from other informative pairs, in the end all informative dataframes are merged and passed to main `populate_indicators()` method.
When hyperopting, use of hyperoptable parameter `.value` attribute is not supported. Please use `.range` attribute. See [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter)
for more information.
??? Example "Fast and easy way to define informative pairs"
Most of the time we do not need power and flexibility offered by `merge_informative_pair()`, therefore we can use a decorator to quickly define informative pairs.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, informative
class AwesomeStrategy(IStrategy):
# This method is not required.
# def informative_pairs(self): ...
# Define informative upper timeframe for each pair. Decorators can be stacked on same
# method. Available in populate_indicators as 'rsi_30m' and 'rsi_1h'.
@informative('30m')
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/STAKE informative pair. Available in populate_indicators and other methods as
# 'btc_rsi_1h'. Current stake currency should be specified as {stake} format variable
# instead of hardcoding actual stake currency. Available in populate_indicators and other
# methods as 'btc_usdt_rsi_1h' (when stake currency is USDT).
@informative('1h', 'BTC/{stake}')
def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/ETH informative pair. You must specify quote currency if it is different from
# stake currency. Available in populate_indicators and other methods as 'eth_btc_rsi_1h'.
@informative('1h', 'ETH/BTC')
def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/STAKE informative pair. A custom formatter may be specified for formatting
# column names. A callable `fmt(**kwargs) -> str` may be specified, to implement custom
# formatting. Available in populate_indicators and other methods as 'rsi_upper'.
@informative('1h', 'BTC/{stake}', '{column}')
def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi_upper'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Strategy timeframe indicators for current pair.
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
# Informative pairs are available in this method.
dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h']
return dataframe
```
!!! Note
Do not use `@informative` decorator if you need to use data of one informative pair when generating another informative pair. Instead, define informative pairs
manually as described [in the DataProvider section](#complete-data-provider-sample).
!!! Note
Use string formatting when accessing informative dataframes of other pairs. This will allow easily changing stake currency in config without having to adjust strategy code.
``` python
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
stake = self.config['stake_currency']
dataframe.loc[
(
(dataframe[f'btc_{stake}_rsi_1h'] < 35)
&
(dataframe['volume'] > 0)
),
['buy', 'buy_tag']] = (1, 'buy_signal_rsi')
return dataframe
```
Alternatively column renaming may be used to remove stake currency from column names: `@informative('1h', 'BTC/{stake}', fmt='{base}_{column}_{timeframe}')`.
!!! Warning "Duplicate method names"
Methods tagged with `@informative()` decorator must always have unique names! Re-using same name (for example when copy-pasting already defined informative method)
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
## Additional data (Wallets)

View File

@ -53,7 +53,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
if epochs and export_csv:
HyperoptTools.export_csv_file(
config, epochs, total_epochs, not config.get('hyperopt_list_best', False), export_csv
config, epochs, export_csv
)

View File

@ -119,7 +119,7 @@ class Edge:
)
# Download informative pairs too
res = defaultdict(list)
for p, t in self.strategy.informative_pairs():
for p, t in self.strategy.gather_informative_pairs():
res[t].append(p)
for timeframe, inf_pairs in res.items():
timerange_startup = deepcopy(self._timerange)

View File

@ -85,10 +85,10 @@ class FreqtradeBot(LoggingMixin):
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
# Attach Dataprovider to Strategy baseclass
IStrategy.dp = self.dataprovider
# Attach Wallets to Strategy baseclass
IStrategy.wallets = self.wallets
# Attach Dataprovider to strategy instance
self.strategy.dp = self.dataprovider
# Attach Wallets to strategy instance
self.strategy.wallets = self.wallets
# Initializing Edge only if enabled
self.edge = Edge(self.config, self.exchange, self.strategy) if \
@ -162,7 +162,7 @@ class FreqtradeBot(LoggingMixin):
# Refreshing candles
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
self.strategy.informative_pairs())
self.strategy.gather_informative_pairs())
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()

View File

@ -154,7 +154,7 @@ class Backtesting:
self.strategy: IStrategy = strategy
strategy.dp = self.dataprovider
# Attach Wallets to Strategy baseclass
IStrategy.wallets = self.wallets
strategy.wallets = self.wallets
# Set stoploss_on_exchange to false for backtesting,
# since a "perfect" stoploss-sell is assumed anyway
# And the regular "stoploss" function would not apply to that case

View File

@ -8,6 +8,7 @@ from typing import Any, Dict
from freqtrade import constants
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
from freqtrade.optimize.optimize_reports import generate_edge_table
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
@ -33,6 +34,7 @@ class EdgeCli:
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self.strategy = StrategyResolver.load_strategy(self.config)
self.strategy.dp = DataProvider(config, None)
validate_config_consistency(self.config)

View File

@ -7,6 +7,7 @@ from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Tuple
import numpy as np
import pandas as pd
import rapidjson
import tabulate
from colorama import Fore, Style
@ -298,8 +299,8 @@ class HyperoptTools():
f"Objective: {results['loss']:.5f}")
@staticmethod
def prepare_trials_columns(trials, legacy_mode: bool, has_drawdown: bool) -> str:
def prepare_trials_columns(trials: pd.DataFrame, legacy_mode: bool,
has_drawdown: bool) -> pd.DataFrame:
trials['Best'] = ''
if 'results_metrics.winsdrawslosses' not in trials.columns:
@ -435,8 +436,7 @@ class HyperoptTools():
return table
@staticmethod
def export_csv_file(config: dict, results: list, total_epochs: int, highlight_best: bool,
csv_file: str) -> None:
def export_csv_file(config: dict, results: list, csv_file: str) -> None:
"""
Log result to csv-file
"""

View File

@ -2,7 +2,7 @@
This module contains the class to persist trades into SQLite
"""
import logging
from datetime import datetime, timezone
from datetime import datetime, timedelta, timezone
from decimal import Decimal
from typing import Any, Dict, List, Optional
@ -1026,17 +1026,21 @@ class Trade(_DECL_BASE, LocalTrade):
return total_open_stake_amount or 0
@staticmethod
def get_overall_performance() -> List[Dict[str, Any]]:
def get_overall_performance(minutes=None) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, including profit and trade count
NOTE: Not supported in Backtesting.
"""
filters = [Trade.is_open.is_(False)]
if minutes:
start_date = datetime.now(timezone.utc) - timedelta(minutes=minutes)
filters.append(Trade.close_date >= start_date)
pair_rates = Trade.query.with_entities(
Trade.pair,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(Trade.is_open.is_(False))\
).filter(*filters)\
.group_by(Trade.pair) \
.order_by(desc('profit_sum_abs')) \
.all()

View File

@ -2,7 +2,7 @@
Performance pair list filter
"""
import logging
from typing import Dict, List
from typing import Any, Dict, List
import pandas as pd
@ -15,6 +15,13 @@ logger = logging.getLogger(__name__)
class PerformanceFilter(IPairList):
def __init__(self, exchange, pairlistmanager,
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
self._minutes = pairlistconfig.get('minutes', 0)
@property
def needstickers(self) -> bool:
"""
@ -40,7 +47,7 @@ class PerformanceFilter(IPairList):
"""
# Get the trading performance for pairs from database
try:
performance = pd.DataFrame(Trade.get_overall_performance())
performance = pd.DataFrame(Trade.get_overall_performance(self._minutes))
except AttributeError:
# Performancefilter does not work in backtesting.
self.log_once("PerformanceFilter is not available in this mode.", logger.warning)

View File

@ -46,6 +46,12 @@ class Balances(BaseModel):
value: float
stake: str
note: str
starting_capital: float
starting_capital_ratio: float
starting_capital_pct: float
starting_capital_fiat: float
starting_capital_fiat_ratio: float
starting_capital_fiat_pct: float
class Count(BaseModel):

View File

@ -459,6 +459,9 @@ class RPC:
raise RPCException('Error getting current tickers.')
self._freqtrade.wallets.update(require_update=False)
starting_capital = self._freqtrade.wallets.get_starting_balance()
starting_cap_fiat = self._fiat_converter.convert_amount(
starting_capital, stake_currency, fiat_display_currency) if self._fiat_converter else 0
for coin, balance in self._freqtrade.wallets.get_all_balances().items():
if not balance.total:
@ -494,15 +497,25 @@ class RPC:
else:
raise RPCException('All balances are zero.')
symbol = fiat_display_currency
value = self._fiat_converter.convert_amount(total, stake_currency,
symbol) if self._fiat_converter else 0
value = self._fiat_converter.convert_amount(
total, stake_currency, fiat_display_currency) if self._fiat_converter else 0
starting_capital_ratio = 0.0
starting_capital_ratio = (total / starting_capital) - 1 if starting_capital else 0.0
starting_cap_fiat_ratio = (value / starting_cap_fiat) - 1 if starting_cap_fiat else 0.0
return {
'currencies': output,
'total': total,
'symbol': symbol,
'symbol': fiat_display_currency,
'value': value,
'stake': stake_currency,
'starting_capital': starting_capital,
'starting_capital_ratio': starting_capital_ratio,
'starting_capital_pct': round(starting_capital_ratio * 100, 2),
'starting_capital_fiat': starting_cap_fiat,
'starting_capital_fiat_ratio': starting_cap_fiat_ratio,
'starting_capital_fiat_pct': round(starting_cap_fiat_ratio * 100, 2),
'note': 'Simulated balances' if self._freqtrade.config['dry_run'] else ''
}

View File

@ -603,12 +603,15 @@ class Telegram(RPCHandler):
output = ''
if self._config['dry_run']:
output += (
f"*Warning:* Simulated balances in Dry Mode.\n"
"This mode is still experimental!\n"
"Starting capital: "
f"`{self._config['dry_run_wallet']}` {self._config['stake_currency']}.\n"
)
output += "*Warning:* Simulated balances in Dry Mode.\n"
output += ("Starting capital: "
f"`{result['starting_capital']}` {self._config['stake_currency']}"
)
output += (f" `{result['starting_capital_fiat']}` "
f"{self._config['fiat_display_currency']}.\n"
) if result['starting_capital_fiat'] > 0 else '.\n'
total_dust_balance = 0
total_dust_currencies = 0
for curr in result['currencies']:
@ -641,9 +644,12 @@ class Telegram(RPCHandler):
f"{round_coin_value(total_dust_balance, result['stake'], False)}`\n")
output += ("\n*Estimated Value*:\n"
f"\t`{result['stake']}: {result['total']: .8f}`\n"
f"\t`{result['stake']}: "
f"{round_coin_value(result['total'], result['stake'], False)}`"
f" `({result['starting_capital_pct']}%)`\n"
f"\t`{result['symbol']}: "
f"{round_coin_value(result['value'], result['symbol'], False)}`\n")
f"{round_coin_value(result['value'], result['symbol'], False)}`"
f" `({result['starting_capital_fiat_pct']}%)`\n")
self._send_msg(output, reload_able=True, callback_path="update_balance",
query=update.callback_query)
except RPCException as e:

View File

@ -3,5 +3,7 @@ from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timefr
timeframe_to_prev_date, timeframe_to_seconds)
from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter,
IntParameter, RealParameter)
from freqtrade.strategy.informative_decorator import informative
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open
from freqtrade.strategy.strategy_helper import (merge_informative_pair, stoploss_from_absolute,
stoploss_from_open)

View File

@ -0,0 +1,128 @@
from typing import Any, Callable, NamedTuple, Optional, Union
from pandas import DataFrame
from freqtrade.exceptions import OperationalException
from freqtrade.strategy.strategy_helper import merge_informative_pair
PopulateIndicators = Callable[[Any, DataFrame, dict], DataFrame]
class InformativeData(NamedTuple):
asset: Optional[str]
timeframe: str
fmt: Union[str, Callable[[Any], str], None]
ffill: bool
def informative(timeframe: str, asset: str = '',
fmt: Optional[Union[str, Callable[[Any], str]]] = None,
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
"""
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
define informative indicators.
Example usage:
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
current pair.
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
specified, defaults to:
* {base}_{quote}_{column}_{timeframe} if asset is specified.
* {column}_{timeframe} if asset is not specified.
Format string supports these format variables:
* {asset} - full name of the asset, for example 'BTC/USDT'.
* {base} - base currency in lower case, for example 'eth'.
* {BASE} - same as {base}, except in upper case.
* {quote} - quote currency in lower case, for example 'usdt'.
* {QUOTE} - same as {quote}, except in upper case.
* {column} - name of dataframe column.
* {timeframe} - timeframe of informative dataframe.
:param ffill: ffill dataframe after merging informative pair.
"""
_asset = asset
_timeframe = timeframe
_fmt = fmt
_ffill = ffill
def decorator(fn: PopulateIndicators):
informative_pairs = getattr(fn, '_ft_informative', [])
informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill))
setattr(fn, '_ft_informative', informative_pairs)
return fn
return decorator
def _format_pair_name(config, pair: str) -> str:
return pair.format(stake_currency=config['stake_currency'],
stake=config['stake_currency']).upper()
def _create_and_merge_informative_pair(strategy, dataframe: DataFrame, metadata: dict,
inf_data: InformativeData,
populate_indicators: PopulateIndicators):
asset = inf_data.asset or ''
timeframe = inf_data.timeframe
fmt = inf_data.fmt
config = strategy.config
if asset:
# Insert stake currency if needed.
asset = _format_pair_name(config, asset)
else:
# Not specifying an asset will define informative dataframe for current pair.
asset = metadata['pair']
if '/' in asset:
base, quote = asset.split('/')
else:
# When futures are supported this may need reevaluation.
# base, quote = asset, ''
raise OperationalException('Not implemented.')
# Default format. This optimizes for the common case: informative pairs using same stake
# currency. When quote currency matches stake currency, column name will omit base currency.
# This allows easily reconfiguring strategy to use different base currency. In a rare case
# where it is desired to keep quote currency in column name at all times user should specify
# fmt='{base}_{quote}_{column}_{timeframe}' format or similar.
if not fmt:
fmt = '{column}_{timeframe}' # Informatives of current pair
if inf_data.asset:
fmt = '{base}_{quote}_' + fmt # Informatives of other pairs
inf_metadata = {'pair': asset, 'timeframe': timeframe}
inf_dataframe = strategy.dp.get_pair_dataframe(asset, timeframe)
inf_dataframe = populate_indicators(strategy, inf_dataframe, inf_metadata)
formatter: Any = None
if callable(fmt):
formatter = fmt # A custom user-specified formatter function.
else:
formatter = fmt.format # A default string formatter.
fmt_args = {
'BASE': base.upper(),
'QUOTE': quote.upper(),
'base': base.lower(),
'quote': quote.lower(),
'asset': asset,
'timeframe': timeframe,
}
inf_dataframe.rename(columns=lambda column: formatter(column=column, **fmt_args),
inplace=True)
date_column = formatter(column='date', **fmt_args)
if date_column in dataframe.columns:
raise OperationalException(f'Duplicate column name {date_column} exists in '
f'dataframe! Ensure column names are unique!')
dataframe = merge_informative_pair(dataframe, inf_dataframe, strategy.timeframe, timeframe,
ffill=inf_data.ffill, append_timeframe=False,
date_column=date_column)
return dataframe

View File

@ -19,6 +19,9 @@ from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.exchange.exchange import timeframe_to_next_date
from freqtrade.persistence import PairLocks, Trade
from freqtrade.strategy.hyper import HyperStrategyMixin
from freqtrade.strategy.informative_decorator import (InformativeData, PopulateIndicators,
_create_and_merge_informative_pair,
_format_pair_name)
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
@ -118,7 +121,7 @@ class IStrategy(ABC, HyperStrategyMixin):
# Class level variables (intentional) containing
# the dataprovider (dp) (access to other candles, historic data, ...)
# and wallets - access to the current balance.
dp: Optional[DataProvider] = None
dp: Optional[DataProvider]
wallets: Optional[Wallets] = None
# Filled from configuration
stake_currency: str
@ -134,6 +137,24 @@ class IStrategy(ABC, HyperStrategyMixin):
self._last_candle_seen_per_pair: Dict[str, datetime] = {}
super().__init__(config)
# Gather informative pairs from @informative-decorated methods.
self._ft_informative: List[Tuple[InformativeData, PopulateIndicators]] = []
for attr_name in dir(self.__class__):
cls_method = getattr(self.__class__, attr_name)
if not callable(cls_method):
continue
informative_data_list = getattr(cls_method, '_ft_informative', None)
if not isinstance(informative_data_list, list):
# Type check is required because mocker would return a mock object that evaluates to
# True, confusing this code.
continue
strategy_timeframe_minutes = timeframe_to_minutes(self.timeframe)
for informative_data in informative_data_list:
if timeframe_to_minutes(informative_data.timeframe) < strategy_timeframe_minutes:
raise OperationalException('Informative timeframe must be equal or higher than '
'strategy timeframe!')
self._ft_informative.append((informative_data, cls_method))
@abstractmethod
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
@ -377,6 +398,23 @@ class IStrategy(ABC, HyperStrategyMixin):
# END - Intended to be overridden by strategy
###
def gather_informative_pairs(self) -> ListPairsWithTimeframes:
"""
Internal method which gathers all informative pairs (user or automatically defined).
"""
informative_pairs = self.informative_pairs()
for inf_data, _ in self._ft_informative:
if inf_data.asset:
pair_tf = (_format_pair_name(self.config, inf_data.asset), inf_data.timeframe)
informative_pairs.append(pair_tf)
else:
if not self.dp:
raise OperationalException('@informative decorator with unspecified asset '
'requires DataProvider instance.')
for pair in self.dp.current_whitelist():
informative_pairs.append((pair, inf_data.timeframe))
return list(set(informative_pairs))
def get_strategy_name(self) -> str:
"""
Returns strategy class name
@ -802,6 +840,12 @@ class IStrategy(ABC, HyperStrategyMixin):
:return: a Dataframe with all mandatory indicators for the strategies
"""
logger.debug(f"Populating indicators for pair {metadata.get('pair')}.")
# call populate_indicators_Nm() which were tagged with @informative decorator.
for inf_data, populate_fn in self._ft_informative:
dataframe = _create_and_merge_informative_pair(
self, dataframe, metadata, inf_data, populate_fn)
if self._populate_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)

View File

@ -4,7 +4,9 @@ from freqtrade.exchange import timeframe_to_minutes
def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
timeframe: str, timeframe_inf: str, ffill: bool = True) -> pd.DataFrame:
timeframe: str, timeframe_inf: str, ffill: bool = True,
append_timeframe: bool = True,
date_column: str = 'date') -> pd.DataFrame:
"""
Correctly merge informative samples to the original dataframe, avoiding lookahead bias.
@ -24,6 +26,8 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
:param timeframe: Timeframe of the original pair sample.
:param timeframe_inf: Timeframe of the informative pair sample.
:param ffill: Forwardfill missing values - optional but usually required
:param append_timeframe: Rename columns by appending timeframe.
:param date_column: A custom date column name.
:return: Merged dataframe
:raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe
"""
@ -32,25 +36,29 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
minutes = timeframe_to_minutes(timeframe)
if minutes == minutes_inf:
# No need to forwardshift if the timeframes are identical
informative['date_merge'] = informative["date"]
informative['date_merge'] = informative[date_column]
elif minutes < minutes_inf:
# Subtract "small" timeframe so merging is not delayed by 1 small candle
# Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073
informative['date_merge'] = (
informative["date"] + pd.to_timedelta(minutes_inf, 'm') - pd.to_timedelta(minutes, 'm')
informative[date_column] + pd.to_timedelta(minutes_inf, 'm') -
pd.to_timedelta(minutes, 'm')
)
else:
raise ValueError("Tried to merge a faster timeframe to a slower timeframe."
"This would create new rows, and can throw off your regular indicators.")
# Rename columns to be unique
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
date_merge = 'date_merge'
if append_timeframe:
date_merge = f'date_merge_{timeframe_inf}'
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
# Combine the 2 dataframes
# all indicators on the informative sample MUST be calculated before this point
dataframe = pd.merge(dataframe, informative, left_on='date',
right_on=f'date_merge_{timeframe_inf}', how='left')
dataframe = dataframe.drop(f'date_merge_{timeframe_inf}', axis=1)
right_on=date_merge, how='left')
dataframe = dataframe.drop(date_merge, axis=1)
if ffill:
dataframe = dataframe.ffill()
@ -83,3 +91,28 @@ def stoploss_from_open(open_relative_stop: float, current_profit: float) -> floa
# negative stoploss values indicate the requested stop price is higher than the current price
return max(stoploss, 0.0)
def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
"""
Given current price and desired stop price, return a stop loss value that is relative to current
price.
The requested stop can be positive for a stop above the open price, or negative for
a stop below the open price. The return value is always >= 0.
Returns 0 if the resulting stop price would be above the current price.
:param stop_rate: Stop loss price.
:param current_rate: Current asset price.
:return: Positive stop loss value relative to current price
"""
# formula is undefined for current_rate 0, return maximum value
if current_rate == 0:
return 1
stoploss = 1 - (stop_rate / current_rate)
# negative stoploss values indicate the requested stop price is higher than the current price
return max(stoploss, 0.0)

View File

@ -62,7 +62,7 @@ function updateenv() {
then
REQUIREMENTS_PLOT="-r requirements-plot.txt"
fi
if [ "${SYS_ARCH}" == "armv7l" ]; then
if [ "${SYS_ARCH}" == "armv7l" ] || [ "${SYS_ARCH}" == "armv6l" ]; then
echo "Detected Raspberry, installing cython, skipping hyperopt installation."
${PYTHON} -m pip install --upgrade cython
else

View File

@ -12,7 +12,8 @@ from freqtrade.persistence import Trade
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.plugins.pairlistmanager import PairListManager
from freqtrade.resolvers import PairListResolver
from tests.conftest import get_patched_exchange, get_patched_freqtradebot, log_has, log_has_re
from tests.conftest import (create_mock_trades, get_patched_exchange, get_patched_freqtradebot,
log_has, log_has_re)
@pytest.fixture(scope="function")
@ -663,6 +664,31 @@ def test_PerformanceFilter_error(mocker, whitelist_conf, caplog) -> None:
assert log_has("PerformanceFilter is not available in this mode.", caplog)
@pytest.mark.usefixtures("init_persistence")
def test_PerformanceFilter_lookback(mocker, whitelist_conf, fee) -> None:
whitelist_conf['exchange']['pair_whitelist'].append('XRP/BTC')
whitelist_conf['pairlists'] = [
{"method": "StaticPairList"},
{"method": "PerformanceFilter", "minutes": 60}
]
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True))
exchange = get_patched_exchange(mocker, whitelist_conf)
pm = PairListManager(exchange, whitelist_conf)
pm.refresh_pairlist()
assert pm.whitelist == ['ETH/BTC', 'TKN/BTC', 'XRP/BTC']
with time_machine.travel("2021-09-01 05:00:00 +00:00") as t:
create_mock_trades(fee)
pm.refresh_pairlist()
assert pm.whitelist == ['XRP/BTC', 'ETH/BTC', 'TKN/BTC']
# Move to "outside" of lookback window, so original sorting is restored.
t.move_to("2021-09-01 07:00:00 +00:00")
pm.refresh_pairlist()
assert pm.whitelist == ['ETH/BTC', 'TKN/BTC', 'XRP/BTC']
def test_gen_pair_whitelist_not_supported(mocker, default_conf, tickers) -> None:
default_conf['pairlists'] = [{'method': 'VolumePairList', 'number_assets': 10}]

View File

@ -422,20 +422,22 @@ def test_api_stopbuy(botclient):
assert ftbot.config['max_open_trades'] == 0
def test_api_balance(botclient, mocker, rpc_balance):
def test_api_balance(botclient, mocker, rpc_balance, tickers):
ftbot, client = botclient
ftbot.config['dry_run'] = False
mocker.patch('freqtrade.exchange.Exchange.get_balances', return_value=rpc_balance)
mocker.patch('freqtrade.exchange.Exchange.get_tickers', tickers)
mocker.patch('freqtrade.exchange.Exchange.get_valid_pair_combination',
side_effect=lambda a, b: f"{a}/{b}")
ftbot.wallets.update()
rc = client_get(client, f"{BASE_URI}/balance")
assert_response(rc)
assert "currencies" in rc.json()
assert len(rc.json()["currencies"]) == 5
assert rc.json()['currencies'][0] == {
response = rc.json()
assert "currencies" in response
assert len(response["currencies"]) == 5
assert response['currencies'][0] == {
'currency': 'BTC',
'free': 12.0,
'balance': 12.0,
@ -443,6 +445,10 @@ def test_api_balance(botclient, mocker, rpc_balance):
'est_stake': 12.0,
'stake': 'BTC',
}
assert 'starting_capital' in response
assert 'starting_capital_fiat' in response
assert 'starting_capital_pct' in response
assert 'starting_capital_ratio' in response
def test_api_count(botclient, mocker, ticker, fee, markets):
@ -1218,6 +1224,7 @@ def test_api_strategies(botclient):
assert_response(rc)
assert rc.json() == {'strategies': [
'HyperoptableStrategy',
'InformativeDecoratorTest',
'StrategyTestV2',
'TestStrategyLegacyV1'
]}

View File

@ -576,6 +576,8 @@ def test_balance_handle_too_large_response(default_conf, update, mocker) -> None
'total': 100.0,
'symbol': 100.0,
'value': 1000.0,
'starting_capital': 1000,
'starting_capital_fiat': 1000,
})
telegram, freqtradebot, msg_mock = get_telegram_testobject(mocker, default_conf)

View File

@ -0,0 +1,75 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
from pandas import DataFrame
from freqtrade.strategy import informative, merge_informative_pair
from freqtrade.strategy.interface import IStrategy
class InformativeDecoratorTest(IStrategy):
"""
Strategy used by tests freqtrade bot.
Please do not modify this strategy, it's intended for internal use only.
Please look at the SampleStrategy in the user_data/strategy directory
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
INTERFACE_VERSION = 2
stoploss = -0.10
timeframe = '5m'
startup_candle_count: int = 20
def informative_pairs(self):
return [('BTC/USDT', '5m')]
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['buy'] = 0
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['sell'] = 0
return dataframe
# Decorator stacking test.
@informative('30m')
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
# Simple informative test.
@informative('1h', 'BTC/{stake}')
def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
# Quote currency different from stake currency test.
@informative('1h', 'ETH/BTC')
def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
# Formatting test.
@informative('30m', 'BTC/{stake}', '{column}_{BASE}_{QUOTE}_{base}_{quote}_{asset}_{timeframe}')
def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
# Custom formatter test
@informative('30m', 'ETH/{stake}', fmt=lambda column, **kwargs: column + '_from_callable')
def populate_indicators_eth_30m(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Strategy timeframe indicators for current pair.
dataframe['rsi'] = 14
# Informative pairs are available in this method.
dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h']
# Mixing manual informative pairs with decorators.
informative = self.dp.get_pair_dataframe('BTC/USDT', '5m')
informative['rsi'] = 14
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, '5m', ffill=True)
return dataframe

View File

@ -611,7 +611,7 @@ def test_is_informative_pairs_callback(default_conf):
strategy = StrategyResolver.load_strategy(default_conf)
# Should return empty
# Uses fallback to base implementation
assert [] == strategy.informative_pairs()
assert [] == strategy.gather_informative_pairs()
@pytest.mark.parametrize('error', [

View File

@ -4,7 +4,9 @@ import numpy as np
import pandas as pd
import pytest
from freqtrade.strategy import merge_informative_pair, stoploss_from_open, timeframe_to_minutes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.strategy import (merge_informative_pair, stoploss_from_absolute, stoploss_from_open,
timeframe_to_minutes)
def generate_test_data(timeframe: str, size: int):
@ -132,3 +134,65 @@ def test_stoploss_from_open():
assert stoploss == 0
else:
assert isclose(stop_price, expected_stop_price, rel_tol=0.00001)
def test_stoploss_from_absolute():
assert stoploss_from_absolute(90, 100) == 1 - (90 / 100)
assert stoploss_from_absolute(100, 100) == 0
assert stoploss_from_absolute(110, 100) == 0
assert stoploss_from_absolute(100, 0) == 1
assert stoploss_from_absolute(0, 100) == 1
def test_informative_decorator(mocker, default_conf):
test_data_5m = generate_test_data('5m', 40)
test_data_30m = generate_test_data('30m', 40)
test_data_1h = generate_test_data('1h', 40)
data = {
('XRP/USDT', '5m'): test_data_5m,
('XRP/USDT', '30m'): test_data_30m,
('XRP/USDT', '1h'): test_data_1h,
('LTC/USDT', '5m'): test_data_5m,
('LTC/USDT', '30m'): test_data_30m,
('LTC/USDT', '1h'): test_data_1h,
('BTC/USDT', '30m'): test_data_30m,
('BTC/USDT', '5m'): test_data_5m,
('BTC/USDT', '1h'): test_data_1h,
('ETH/USDT', '1h'): test_data_1h,
('ETH/USDT', '30m'): test_data_30m,
('ETH/BTC', '1h'): test_data_1h,
}
from .strats.informative_decorator_strategy import InformativeDecoratorTest
default_conf['stake_currency'] = 'USDT'
strategy = InformativeDecoratorTest(config=default_conf)
strategy.dp = DataProvider({}, None, None)
mocker.patch.object(strategy.dp, 'current_whitelist', return_value=[
'XRP/USDT', 'LTC/USDT', 'BTC/USDT'
])
assert len(strategy._ft_informative) == 6 # Equal to number of decorators used
informative_pairs = [('XRP/USDT', '1h'), ('LTC/USDT', '1h'), ('XRP/USDT', '30m'),
('LTC/USDT', '30m'), ('BTC/USDT', '1h'), ('BTC/USDT', '30m'),
('BTC/USDT', '5m'), ('ETH/BTC', '1h'), ('ETH/USDT', '30m')]
for inf_pair in informative_pairs:
assert inf_pair in strategy.gather_informative_pairs()
def test_historic_ohlcv(pair, timeframe):
return data[(pair, timeframe or strategy.timeframe)].copy()
mocker.patch('freqtrade.data.dataprovider.DataProvider.historic_ohlcv',
side_effect=test_historic_ohlcv)
analyzed = strategy.advise_all_indicators(
{p: data[(p, strategy.timeframe)] for p in ('XRP/USDT', 'LTC/USDT')})
expected_columns = [
'rsi_1h', 'rsi_30m', # Stacked informative decorators
'btc_usdt_rsi_1h', # BTC 1h informative
'rsi_BTC_USDT_btc_usdt_BTC/USDT_30m', # Column formatting
'rsi_from_callable', # Custom column formatter
'eth_btc_rsi_1h', # Quote currency not matching stake currency
'rsi', 'rsi_less', # Non-informative columns
'rsi_5m', # Manual informative dataframe
]
for _, dataframe in analyzed.items():
for col in expected_columns:
assert col in dataframe.columns

View File

@ -35,7 +35,7 @@ def test_search_all_strategies_no_failed():
directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
assert isinstance(strategies, list)
assert len(strategies) == 3
assert len(strategies) == 4
assert isinstance(strategies[0], dict)
@ -43,10 +43,10 @@ def test_search_all_strategies_with_failed():
directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
assert isinstance(strategies, list)
assert len(strategies) == 4
assert len(strategies) == 5
# with enum_failed=True search_all_objects() shall find 2 good strategies
# and 1 which fails to load
assert len([x for x in strategies if x['class'] is not None]) == 3
assert len([x for x in strategies if x['class'] is not None]) == 4
assert len([x for x in strategies if x['class'] is None]) == 1

View File

@ -78,11 +78,15 @@ def test_bot_cleanup(mocker, default_conf, caplog) -> None:
assert coo_mock.call_count == 1
def test_order_dict_dry_run(default_conf, mocker, caplog) -> None:
@pytest.mark.parametrize('runmode', [
RunMode.DRY_RUN,
RunMode.LIVE
])
def test_order_dict(default_conf, mocker, runmode, caplog) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
conf = default_conf.copy()
conf['runmode'] = RunMode.DRY_RUN
conf['runmode'] = runmode
conf['order_types'] = {
'buy': 'market',
'sell': 'limit',
@ -92,45 +96,14 @@ def test_order_dict_dry_run(default_conf, mocker, caplog) -> None:
conf['bid_strategy']['price_side'] = 'ask'
freqtrade = FreqtradeBot(conf)
if runmode == RunMode.LIVE:
assert not log_has_re(".*stoploss_on_exchange .* dry-run", caplog)
assert freqtrade.strategy.order_types['stoploss_on_exchange']
caplog.clear()
# is left untouched
conf = default_conf.copy()
conf['runmode'] = RunMode.DRY_RUN
conf['order_types'] = {
'buy': 'market',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False,
}
freqtrade = FreqtradeBot(conf)
assert not freqtrade.strategy.order_types['stoploss_on_exchange']
assert not log_has_re(".*stoploss_on_exchange .* dry-run", caplog)
def test_order_dict_live(default_conf, mocker, caplog) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
conf = default_conf.copy()
conf['runmode'] = RunMode.LIVE
conf['order_types'] = {
'buy': 'market',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': True,
}
conf['bid_strategy']['price_side'] = 'ask'
freqtrade = FreqtradeBot(conf)
assert not log_has_re(".*stoploss_on_exchange .* dry-run", caplog)
assert freqtrade.strategy.order_types['stoploss_on_exchange']
caplog.clear()
# is left untouched
conf = default_conf.copy()
conf['runmode'] = RunMode.LIVE
conf['runmode'] = runmode
conf['order_types'] = {
'buy': 'market',
'sell': 'limit',
@ -219,8 +192,14 @@ def test_edge_overrides_stake_amount(mocker, edge_conf) -> None:
'LTC/BTC', freqtrade.edge) == (999.9 * 0.5 * 0.01) / 0.21
def test_edge_overrides_stoploss(limit_buy_order, fee, caplog, mocker, edge_conf) -> None:
@pytest.mark.parametrize('buy_price_mult,ignore_strat_sl', [
# Override stoploss
(0.79, False),
# Override strategy stoploss
(0.85, True)
])
def test_edge_overrides_stoploss(limit_buy_order, fee, caplog, mocker,
buy_price_mult, ignore_strat_sl, edge_conf) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
patch_edge(mocker)
@ -234,9 +213,9 @@ def test_edge_overrides_stoploss(limit_buy_order, fee, caplog, mocker, edge_conf
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=MagicMock(return_value={
'bid': buy_price * 0.79,
'ask': buy_price * 0.79,
'last': buy_price * 0.79
'bid': buy_price * buy_price_mult,
'ask': buy_price * buy_price_mult,
'last': buy_price * buy_price_mult,
}),
get_fee=fee,
)
@ -253,46 +232,10 @@ def test_edge_overrides_stoploss(limit_buy_order, fee, caplog, mocker, edge_conf
#############################################
# stoploss shoud be hit
assert freqtrade.handle_trade(trade) is True
assert log_has('Executing Sell for NEO/BTC. Reason: stop_loss', caplog)
assert trade.sell_reason == SellType.STOP_LOSS.value
def test_edge_should_ignore_strategy_stoploss(limit_buy_order, fee,
mocker, edge_conf) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
patch_edge(mocker)
edge_conf['max_open_trades'] = float('inf')
# Strategy stoploss is -0.1 but Edge imposes a stoploss at -0.2
# Thus, if price falls 15%, stoploss should not be triggered
#
# mocking the ticker: price is falling ...
buy_price = limit_buy_order['price']
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=MagicMock(return_value={
'bid': buy_price * 0.85,
'ask': buy_price * 0.85,
'last': buy_price * 0.85
}),
get_fee=fee,
)
#############################################
# Create a trade with "limit_buy_order" price
freqtrade = FreqtradeBot(edge_conf)
freqtrade.active_pair_whitelist = ['NEO/BTC']
patch_get_signal(freqtrade)
freqtrade.strategy.min_roi_reached = MagicMock(return_value=False)
freqtrade.enter_positions()
trade = Trade.query.first()
trade.update(limit_buy_order)
#############################################
# stoploss shoud not be hit
assert freqtrade.handle_trade(trade) is False
assert freqtrade.handle_trade(trade) is not ignore_strat_sl
if not ignore_strat_sl:
assert log_has('Executing Sell for NEO/BTC. Reason: stop_loss', caplog)
assert trade.sell_reason == SellType.STOP_LOSS.value
def test_total_open_trades_stakes(mocker, default_conf, ticker, fee) -> None:
@ -376,8 +319,16 @@ def test_create_trade_no_stake_amount(default_conf, ticker, limit_buy_order,
freqtrade.create_trade('ETH/BTC')
def test_create_trade_minimal_amount(default_conf, ticker, limit_buy_order_open,
fee, mocker) -> None:
@pytest.mark.parametrize('stake_amount,create,amount_enough,max_open_trades', [
(0.0005, True, True, 99),
(0.000000005, True, False, 99),
(0, False, True, 99),
(UNLIMITED_STAKE_AMOUNT, False, True, 0),
])
def test_create_trade_minimal_amount(
default_conf, ticker, limit_buy_order_open, fee, mocker,
stake_amount, create, amount_enough, max_open_trades, caplog
) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
buy_mock = MagicMock(return_value=limit_buy_order_open)
@ -387,78 +338,33 @@ def test_create_trade_minimal_amount(default_conf, ticker, limit_buy_order_open,
create_order=buy_mock,
get_fee=fee,
)
default_conf['stake_amount'] = 0.0005
default_conf['max_open_trades'] = max_open_trades
freqtrade = FreqtradeBot(default_conf)
freqtrade.config['stake_amount'] = stake_amount
patch_get_signal(freqtrade)
freqtrade.create_trade('ETH/BTC')
rate, amount = buy_mock.call_args[1]['rate'], buy_mock.call_args[1]['amount']
assert rate * amount <= default_conf['stake_amount']
def test_create_trade_too_small_stake_amount(default_conf, ticker, limit_buy_order_open,
fee, mocker, caplog) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
buy_mock = MagicMock(return_value=limit_buy_order_open)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
create_order=buy_mock,
get_fee=fee,
)
freqtrade = FreqtradeBot(default_conf)
freqtrade.config['stake_amount'] = 0.000000005
patch_get_signal(freqtrade)
assert freqtrade.create_trade('ETH/BTC')
assert log_has_re(r"Stake amount for pair .* is too small.*", caplog)
def test_create_trade_zero_stake_amount(default_conf, ticker, limit_buy_order_open,
fee, mocker) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
buy_mock = MagicMock(return_value=limit_buy_order_open)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
create_order=buy_mock,
get_fee=fee,
)
freqtrade = FreqtradeBot(default_conf)
freqtrade.config['stake_amount'] = 0
patch_get_signal(freqtrade)
assert not freqtrade.create_trade('ETH/BTC')
def test_create_trade_limit_reached(default_conf, ticker, limit_buy_order_open,
fee, mocker) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
create_order=MagicMock(return_value=limit_buy_order_open),
get_fee=fee,
)
default_conf['max_open_trades'] = 0
default_conf['stake_amount'] = UNLIMITED_STAKE_AMOUNT
freqtrade = FreqtradeBot(default_conf)
patch_get_signal(freqtrade)
assert not freqtrade.create_trade('ETH/BTC')
assert freqtrade.wallets.get_trade_stake_amount('ETH/BTC', freqtrade.edge) == 0
if create:
assert freqtrade.create_trade('ETH/BTC')
if amount_enough:
rate, amount = buy_mock.call_args[1]['rate'], buy_mock.call_args[1]['amount']
assert rate * amount <= default_conf['stake_amount']
else:
assert log_has_re(
r"Stake amount for pair .* is too small.*",
caplog
)
else:
assert not freqtrade.create_trade('ETH/BTC')
if not max_open_trades:
assert freqtrade.wallets.get_trade_stake_amount('ETH/BTC', freqtrade.edge) == 0
@pytest.mark.parametrize('whitelist,positions', [
(["ETH/BTC"], 1), # No pairs left
([], 0), # No pairs in whitelist
])
def test_enter_positions_no_pairs_left(default_conf, ticker, limit_buy_order_open, fee,
mocker, caplog) -> None:
whitelist, positions, mocker, caplog) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
mocker.patch.multiple(
@ -467,36 +373,20 @@ def test_enter_positions_no_pairs_left(default_conf, ticker, limit_buy_order_ope
create_order=MagicMock(return_value=limit_buy_order_open),
get_fee=fee,
)
default_conf['exchange']['pair_whitelist'] = ["ETH/BTC"]
default_conf['exchange']['pair_whitelist'] = whitelist
freqtrade = FreqtradeBot(default_conf)
patch_get_signal(freqtrade)
n = freqtrade.enter_positions()
assert n == 1
assert not log_has_re(r"No currency pair in active pair whitelist.*", caplog)
n = freqtrade.enter_positions()
assert n == 0
assert log_has_re(r"No currency pair in active pair whitelist.*", caplog)
def test_enter_positions_no_pairs_in_whitelist(default_conf, ticker, limit_buy_order, fee,
mocker, caplog) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=ticker,
create_order=MagicMock(return_value={'id': limit_buy_order['id']}),
get_fee=fee,
)
default_conf['exchange']['pair_whitelist'] = []
freqtrade = FreqtradeBot(default_conf)
patch_get_signal(freqtrade)
n = freqtrade.enter_positions()
assert n == 0
assert log_has("Active pair whitelist is empty.", caplog)
assert n == positions
if positions:
assert not log_has_re(r"No currency pair in active pair whitelist.*", caplog)
n = freqtrade.enter_positions()
assert n == 0
assert log_has_re(r"No currency pair in active pair whitelist.*", caplog)
else:
assert n == 0
assert log_has("Active pair whitelist is empty.", caplog)
@pytest.mark.usefixtures("init_persistence")
@ -1668,30 +1558,27 @@ def test_tsl_on_exchange_compatible_with_edge(mocker, edge_conf, fee, caplog,
)
def test_enter_positions(mocker, default_conf, caplog) -> None:
@pytest.mark.parametrize('return_value,side_effect,log_message', [
(False, None, 'Found no buy signals for whitelisted currencies. Trying again...'),
(None, DependencyException, 'Unable to create trade for ETH/BTC: ')
])
def test_enter_positions(mocker, default_conf, return_value, side_effect,
log_message, caplog) -> None:
caplog.set_level(logging.DEBUG)
freqtrade = get_patched_freqtradebot(mocker, default_conf)
mock_ct = mocker.patch('freqtrade.freqtradebot.FreqtradeBot.create_trade',
MagicMock(return_value=False))
n = freqtrade.enter_positions()
assert n == 0
assert log_has('Found no enter signals for whitelisted currencies. Trying again...', caplog)
# create_trade should be called once for every pair in the whitelist.
assert mock_ct.call_count == len(default_conf['exchange']['pair_whitelist'])
def test_enter_positions_exception(mocker, default_conf, caplog) -> None:
freqtrade = get_patched_freqtradebot(mocker, default_conf)
mock_ct = mocker.patch(
'freqtrade.freqtradebot.FreqtradeBot.create_trade',
MagicMock(side_effect=DependencyException)
MagicMock(
return_value=return_value,
side_effect=side_effect
)
)
n = freqtrade.enter_positions()
assert n == 0
assert log_has(log_message, caplog)
# create_trade should be called once for every pair in the whitelist.
assert mock_ct.call_count == len(default_conf['exchange']['pair_whitelist'])
assert log_has('Unable to create trade for ETH/BTC: ', caplog)
def test_exit_positions(mocker, default_conf, limit_buy_order, caplog) -> None:
@ -1785,8 +1672,13 @@ def test_update_trade_state(mocker, default_conf, limit_buy_order, caplog) -> No
assert log_has_re('Found open order for.*', caplog)
@pytest.mark.parametrize('initial_amount,has_rounding_fee', [
(90.99181073 + 1e-14, True),
(8.0, False)
])
def test_update_trade_state_withorderdict(default_conf, trades_for_order, limit_buy_order, fee,
mocker):
mocker, initial_amount, has_rounding_fee, caplog):
trades_for_order[0]['amount'] = initial_amount
mocker.patch('freqtrade.exchange.Exchange.get_trades_for_order', return_value=trades_for_order)
# fetch_order should not be called!!
mocker.patch('freqtrade.exchange.Exchange.fetch_order', MagicMock(side_effect=ValueError))
@ -1807,32 +1699,8 @@ def test_update_trade_state_withorderdict(default_conf, trades_for_order, limit_
freqtrade.update_trade_state(trade, '123456', limit_buy_order)
assert trade.amount != amount
assert trade.amount == limit_buy_order['amount']
def test_update_trade_state_withorderdict_rounding_fee(default_conf, trades_for_order, fee,
limit_buy_order, mocker, caplog):
trades_for_order[0]['amount'] = limit_buy_order['amount'] + 1e-14
mocker.patch('freqtrade.exchange.Exchange.get_trades_for_order', return_value=trades_for_order)
# fetch_order should not be called!!
mocker.patch('freqtrade.exchange.Exchange.fetch_order', MagicMock(side_effect=ValueError))
patch_exchange(mocker)
amount = sum(x['amount'] for x in trades_for_order)
freqtrade = get_patched_freqtradebot(mocker, default_conf)
trade = Trade(
pair='LTC/ETH',
amount=amount,
exchange='binance',
open_rate=0.245441,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_order_id='123456',
is_open=True,
open_date=arrow.utcnow().datetime,
)
freqtrade.update_trade_state(trade, '123456', limit_buy_order)
assert trade.amount != amount
assert trade.amount == limit_buy_order['amount']
assert log_has_re(r'Applying fee on amount for .*', caplog)
if has_rounding_fee:
assert log_has_re(r'Applying fee on amount for .*', caplog)
def test_update_trade_state_exception(mocker, default_conf,
@ -3144,16 +3012,28 @@ def test_execute_trade_exit_insufficient_funds_error(default_conf, ticker, fee,
assert mock_insuf.call_count == 1
def test_sell_profit_only_enable_profit(default_conf, limit_buy_order, limit_buy_order_open,
fee, mocker) -> None:
@pytest.mark.parametrize('profit_only,bid,ask,handle_first,handle_second,sell_type', [
# Enable profit
(True, 0.00001172, 0.00001173, False, True, SellType.SELL_SIGNAL.value),
# Disable profit
(False, 0.00002172, 0.00002173, True, False, SellType.SELL_SIGNAL.value),
# Enable loss
# * Shouldn't this be SellType.STOP_LOSS.value
(True, 0.00000172, 0.00000173, False, False, None),
# Disable loss
(False, 0.00000172, 0.00000173, True, False, SellType.SELL_SIGNAL.value),
])
def test_sell_profit_only(
default_conf, limit_buy_order, limit_buy_order_open,
fee, mocker, profit_only, bid, ask, handle_first, handle_second, sell_type) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=MagicMock(return_value={
'bid': 0.00001172,
'ask': 0.00001173,
'last': 0.00001172
'bid': bid,
'ask': ask,
'last': bid
}),
create_order=MagicMock(side_effect=[
limit_buy_order_open,
@ -3163,128 +3043,29 @@ def test_sell_profit_only_enable_profit(default_conf, limit_buy_order, limit_buy
)
default_conf.update({
'use_sell_signal': True,
'sell_profit_only': True,
'sell_profit_only': profit_only,
'sell_profit_offset': 0.1,
})
freqtrade = FreqtradeBot(default_conf)
patch_get_signal(freqtrade)
freqtrade.strategy.min_roi_reached = MagicMock(return_value=False)
if sell_type == SellType.SELL_SIGNAL.value:
freqtrade.strategy.min_roi_reached = MagicMock(return_value=False)
else:
freqtrade.strategy.stop_loss_reached = MagicMock(return_value=SellCheckTuple(
sell_type=SellType.NONE))
freqtrade.enter_positions()
trade = Trade.query.first()
trade.update(limit_buy_order)
freqtrade.wallets.update()
patch_get_signal(freqtrade, value=(False, True, None))
assert freqtrade.handle_trade(trade) is False
assert freqtrade.handle_trade(trade) is handle_first
freqtrade.strategy.sell_profit_offset = 0.0
assert freqtrade.handle_trade(trade) is True
if handle_second:
freqtrade.strategy.sell_profit_offset = 0.0
assert freqtrade.handle_trade(trade) is True
assert trade.sell_reason == SellType.SELL_SIGNAL.value
def test_sell_profit_only_disable_profit(default_conf, limit_buy_order, limit_buy_order_open,
fee, mocker) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=MagicMock(return_value={
'bid': 0.00002172,
'ask': 0.00002173,
'last': 0.00002172
}),
create_order=MagicMock(side_effect=[
limit_buy_order_open,
{'id': 1234553382},
]),
get_fee=fee,
)
default_conf.update({
'use_sell_signal': True,
'sell_profit_only': False,
})
freqtrade = FreqtradeBot(default_conf)
patch_get_signal(freqtrade)
freqtrade.strategy.min_roi_reached = MagicMock(return_value=False)
freqtrade.enter_positions()
trade = Trade.query.first()
trade.update(limit_buy_order)
freqtrade.wallets.update()
patch_get_signal(freqtrade, value=(False, True, None))
assert freqtrade.handle_trade(trade) is True
assert trade.sell_reason == SellType.SELL_SIGNAL.value
def test_sell_profit_only_enable_loss(default_conf, limit_buy_order, limit_buy_order_open,
fee, mocker) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=MagicMock(return_value={
'bid': 0.00000172,
'ask': 0.00000173,
'last': 0.00000172
}),
create_order=MagicMock(side_effect=[
limit_buy_order_open,
{'id': 1234553382},
]),
get_fee=fee,
)
default_conf.update({
'use_sell_signal': True,
'sell_profit_only': True,
})
freqtrade = FreqtradeBot(default_conf)
patch_get_signal(freqtrade)
freqtrade.strategy.stop_loss_reached = MagicMock(return_value=SellCheckTuple(
sell_type=SellType.NONE))
freqtrade.enter_positions()
trade = Trade.query.first()
trade.update(limit_buy_order)
patch_get_signal(freqtrade, value=(False, True, None))
assert freqtrade.handle_trade(trade) is False
def test_sell_profit_only_disable_loss(default_conf, limit_buy_order, limit_buy_order_open,
fee, mocker) -> None:
patch_RPCManager(mocker)
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_ticker=MagicMock(return_value={
'bid': 0.0000172,
'ask': 0.0000173,
'last': 0.0000172
}),
create_order=MagicMock(side_effect=[
limit_buy_order_open,
{'id': 1234553382},
]),
get_fee=fee,
)
default_conf.update({
'use_sell_signal': True,
'sell_profit_only': False,
})
freqtrade = FreqtradeBot(default_conf)
patch_get_signal(freqtrade)
freqtrade.strategy.min_roi_reached = MagicMock(return_value=False)
freqtrade.enter_positions()
trade = Trade.query.first()
trade.update(limit_buy_order)
freqtrade.wallets.update()
patch_get_signal(freqtrade, value=(False, True, None))
assert freqtrade.handle_trade(trade) is True
assert trade.sell_reason == SellType.SELL_SIGNAL.value
assert trade.sell_reason == sell_type
def test_sell_not_enough_balance(default_conf, limit_buy_order, limit_buy_order_open,
@ -3322,11 +3103,15 @@ def test_sell_not_enough_balance(default_conf, limit_buy_order, limit_buy_order_
assert trade.amount != amnt
def test__safe_exit_amount(default_conf, fee, caplog, mocker):
@pytest.mark.parametrize('amount_wallet,has_err', [
(95.29, False),
(91.29, True)
])
def test__safe_exit_amount(default_conf, fee, caplog, mocker, amount_wallet, has_err):
patch_RPCManager(mocker)
patch_exchange(mocker)
amount = 95.33
amount_wallet = 95.29
amount_wallet = amount_wallet
mocker.patch('freqtrade.wallets.Wallets.get_free', MagicMock(return_value=amount_wallet))
wallet_update = mocker.patch('freqtrade.wallets.Wallets.update')
trade = Trade(
@ -3340,37 +3125,19 @@ def test__safe_exit_amount(default_conf, fee, caplog, mocker):
)
freqtrade = FreqtradeBot(default_conf)
patch_get_signal(freqtrade)
wallet_update.reset_mock()
assert freqtrade._safe_exit_amount(trade.pair, trade.amount) == amount_wallet
assert log_has_re(r'.*Falling back to wallet-amount.', caplog)
assert wallet_update.call_count == 1
caplog.clear()
wallet_update.reset_mock()
assert freqtrade._safe_exit_amount(trade.pair, amount_wallet) == amount_wallet
assert not log_has_re(r'.*Falling back to wallet-amount.', caplog)
assert wallet_update.call_count == 1
def test__safe_exit_amount_error(default_conf, fee, caplog, mocker):
patch_RPCManager(mocker)
patch_exchange(mocker)
amount = 95.33
amount_wallet = 91.29
mocker.patch('freqtrade.wallets.Wallets.get_free', MagicMock(return_value=amount_wallet))
trade = Trade(
pair='LTC/ETH',
amount=amount,
exchange='binance',
open_rate=0.245441,
open_order_id="123456",
fee_open=fee.return_value,
fee_close=fee.return_value,
)
freqtrade = FreqtradeBot(default_conf)
patch_get_signal(freqtrade)
with pytest.raises(DependencyException, match=r"Not enough amount to exit."):
assert freqtrade._safe_exit_amount(trade.pair, trade.amount)
if has_err:
with pytest.raises(DependencyException, match=r"Not enough amount to sell."):
assert freqtrade._safe_exit_amount(trade.pair, trade.amount)
else:
wallet_update.reset_mock()
assert freqtrade._safe_exit_amount(trade.pair, trade.amount) == amount_wallet
assert log_has_re(r'.*Falling back to wallet-amount.', caplog)
assert wallet_update.call_count == 1
caplog.clear()
wallet_update.reset_mock()
assert freqtrade._safe_exit_amount(trade.pair, amount_wallet) == amount_wallet
assert not log_has_re(r'.*Falling back to wallet-amount.', caplog)
assert wallet_update.call_count == 1
def test_locked_pairs(default_conf, ticker, fee, ticker_sell_down, mocker, caplog) -> None:
@ -4158,50 +3925,37 @@ def test_order_book_depth_of_market_high_delta(default_conf, ticker, limit_buy_o
assert trade is None
def test_order_book_bid_strategy1(mocker, default_conf, order_book_l2) -> None:
@pytest.mark.parametrize('exception_thrown,ask,last,order_book_top,order_book', [
(False, 0.045, 0.046, 2, None),
(True, 0.042, 0.046, 1, {'bids': [[]], 'asks': [[]]})
])
def test_order_book_bid_strategy1(mocker, default_conf, order_book_l2, exception_thrown,
ask, last, order_book_top, order_book, caplog) -> None:
"""
test if function get_rate will return the order book price
instead of the ask rate
test if function get_rate will return the order book price instead of the ask rate
"""
patch_exchange(mocker)
ticker_mock = MagicMock(return_value={'ask': 0.045, 'last': 0.046})
ticker_mock = MagicMock(return_value={'ask': ask, 'last': last})
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_l2_order_book=order_book_l2,
fetch_l2_order_book=MagicMock(return_value=order_book) if order_book else order_book_l2,
fetch_ticker=ticker_mock,
)
default_conf['exchange']['name'] = 'binance'
default_conf['bid_strategy']['use_order_book'] = True
default_conf['bid_strategy']['order_book_top'] = 2
default_conf['bid_strategy']['order_book_top'] = order_book_top
default_conf['bid_strategy']['ask_last_balance'] = 0
default_conf['telegram']['enabled'] = False
freqtrade = FreqtradeBot(default_conf)
assert freqtrade.exchange.get_rate('ETH/BTC', refresh=True, side="buy") == 0.043935
assert ticker_mock.call_count == 0
def test_order_book_bid_strategy_exception(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
ticker_mock = MagicMock(return_value={'ask': 0.042, 'last': 0.046})
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
fetch_l2_order_book=MagicMock(return_value={'bids': [[]], 'asks': [[]]}),
fetch_ticker=ticker_mock,
)
default_conf['exchange']['name'] = 'binance'
default_conf['bid_strategy']['use_order_book'] = True
default_conf['bid_strategy']['order_book_top'] = 1
default_conf['bid_strategy']['ask_last_balance'] = 0
default_conf['telegram']['enabled'] = False
freqtrade = FreqtradeBot(default_conf)
# orderbook shall be used even if tickers would be lower.
with pytest.raises(PricingError):
freqtrade.exchange.get_rate('ETH/BTC', refresh=True, side="buy")
assert log_has_re(r'Buy Price at location 1 from orderbook could not be determined.', caplog)
if exception_thrown:
with pytest.raises(PricingError):
freqtrade.exchange.get_rate('ETH/BTC', refresh=True, side="buy")
assert log_has_re(
r'Buy Price at location 1 from orderbook could not be determined.', caplog)
else:
assert freqtrade.exchange.get_rate('ETH/BTC', refresh=True, side="buy") == 0.043935
assert ticker_mock.call_count == 0
def test_check_depth_of_market_buy(default_conf, mocker, order_book_l2) -> None: