Merge pull request #7434 from freqtrade/improve-train-queue

improve train queue system in FreqAI
This commit is contained in:
Robert Caulk 2022-09-19 10:55:53 +02:00 committed by GitHub
commit f9460c80c2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 54 additions and 36 deletions

View File

@ -28,9 +28,7 @@ logger = logging.getLogger(__name__)
class pair_info(TypedDict):
model_filename: str
first: bool
trained_timestamp: int
priority: int
data_path: str
extras: dict
@ -92,7 +90,7 @@ class FreqaiDataDrawer:
self.old_DBSCAN_eps: Dict[str, float] = {}
self.empty_pair_dict: pair_info = {
"model_filename": "", "trained_timestamp": 0,
"priority": 1, "first": True, "data_path": "", "extras": {}}
"data_path": "", "extras": {}}
def load_drawer_from_disk(self):
"""
@ -217,7 +215,6 @@ class FreqaiDataDrawer:
self.pair_dict[pair] = self.empty_pair_dict.copy()
model_filename = ""
trained_timestamp = 0
self.pair_dict[pair]["priority"] = len(self.pair_dict)
if not data_path_set and self.follow_mode:
logger.warning(
@ -237,18 +234,9 @@ class FreqaiDataDrawer:
return
else:
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict)
return
def pair_to_end_of_training_queue(self, pair: str) -> None:
# march all pairs up in the queue
with self.pair_dict_lock:
for p in self.pair_dict:
self.pair_dict[p]["priority"] -= 1
# send pair to end of queue
self.pair_dict[pair]["priority"] = len(self.pair_dict)
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:
"""
Set the initial return values to the historical predictions dataframe. This avoids needing

View File

@ -3,6 +3,7 @@ import shutil
import threading
import time
from abc import ABC, abstractmethod
from collections import deque
from datetime import datetime, timezone
from pathlib import Path
from threading import Lock
@ -81,6 +82,7 @@ class IFreqaiModel(ABC):
self.pair_it = 0
self.pair_it_train = 0
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
self.train_queue = self._set_train_queue()
self.last_trade_database_summary: DataFrame = {}
self.current_trade_database_summary: DataFrame = {}
self.analysis_lock = Lock()
@ -182,29 +184,36 @@ class IFreqaiModel(ABC):
"""
while not self._stop_event.is_set():
time.sleep(1)
for pair in self.config.get("exchange", {}).get("pair_whitelist"):
pair = self.train_queue[0]
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
# ensure pair is avaialble in dp
if pair not in strategy.dp.current_whitelist():
self.train_queue.popleft()
logger.warning(f'{pair} not in current whitelist, removing from train queue.')
continue
if self.dd.pair_dict[pair]["priority"] != 1:
continue
dk = FreqaiDataKitchen(self.config, self.live, pair)
dk.set_paths(pair, trained_timestamp)
(
retrain,
new_trained_timerange,
data_load_timerange,
) = dk.check_if_new_training_required(trained_timestamp)
dk.set_paths(pair, new_trained_timerange.stopts)
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
if retrain:
self.train_timer('start')
self.extract_data_and_train_model(
new_trained_timerange, pair, strategy, dk, data_load_timerange
)
self.train_timer('stop')
dk = FreqaiDataKitchen(self.config, self.live, pair)
dk.set_paths(pair, trained_timestamp)
(
retrain,
new_trained_timerange,
data_load_timerange,
) = dk.check_if_new_training_required(trained_timestamp)
dk.set_paths(pair, new_trained_timerange.stopts)
self.dd.save_historic_predictions_to_disk()
if retrain:
self.train_timer('start')
self.extract_data_and_train_model(
new_trained_timerange, pair, strategy, dk, data_load_timerange
)
self.train_timer('stop')
# only rotate the queue after the first has been trained.
self.train_queue.rotate(-1)
self.dd.save_historic_predictions_to_disk()
def start_backtesting(
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
@ -558,9 +567,6 @@ class IFreqaiModel(ABC):
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
dk.set_new_model_names(pair, new_trained_timerange)
self.dd.pair_dict[pair]["first"] = False
if self.dd.pair_dict[pair]["priority"] == 1 and self.scanning:
self.dd.pair_to_end_of_training_queue(pair)
self.dd.save_data(model, pair, dk)
if self.freqai_info["feature_parameters"].get("plot_feature_importance", False):
@ -689,6 +695,30 @@ class IFreqaiModel(ABC):
return init_model
def _set_train_queue(self):
"""
Sets train queue from existing train timestamps if they exist
otherwise it sets the train queue based on the provided whitelist.
"""
current_pairlist = self.config.get("exchange", {}).get("pair_whitelist")
if not self.dd.pair_dict:
logger.info('Set fresh train queue from whitelist.')
return deque(current_pairlist)
best_queue = deque()
pair_dict_sorted = sorted(self.dd.pair_dict.items(),
key=lambda k: k[1]['trained_timestamp'])
for pair in pair_dict_sorted:
if pair[0] in current_pairlist:
best_queue.appendleft(pair[0])
for pair in current_pairlist:
if pair not in best_queue:
best_queue.appendleft(pair)
logger.info('Set existing queue from trained timestamps.')
return best_queue
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.

View File

@ -45,7 +45,7 @@ class FreqaiExampleStrategy(IStrategy):
std_dev_multiplier_buy = CategoricalParameter(
[0.75, 1, 1.25, 1.5, 1.75], default=1.25, space="buy", optimize=True)
std_dev_multiplier_sell = CategoricalParameter(
[0.1, 0.25, 0.4], space="sell", default=0.2, optimize=True)
[0.75, 1, 1.25, 1.5, 1.75], space="sell", default=1.25, optimize=True)
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False