Add position_adjustment_enable config keyword to enable it.

This commit is contained in:
Reigo Reinmets 2021-12-11 00:28:12 +02:00
parent b7bf3247b8
commit f97662e816
5 changed files with 270 additions and 4 deletions

View File

@ -173,6 +173,9 @@ class Configuration:
if 'sd_notify' in self.args and self.args['sd_notify']:
config['internals'].update({'sd_notify': True})
if config.get('position_adjustment_enable', False):
logger.warning('`position_adjustment` has been enabled for strategy.')
def _process_datadir_options(self, config: Dict[str, Any]) -> None:
"""
Extract information for sys.argv and load directory configurations

View File

@ -179,7 +179,8 @@ class FreqtradeBot(LoggingMixin):
self.exit_positions(trades)
# Check if we need to adjust our current positions before attempting to buy new trades.
self.process_open_trade_positions()
if self.config.get('position_adjustment_enable', False):
self.process_open_trade_positions()
# Then looking for buy opportunities
if self.get_free_open_trades():

View File

@ -404,7 +404,9 @@ class Backtesting:
def _get_sell_trade_entry_for_candle(self, trade: LocalTrade,
sell_row: Tuple) -> Optional[LocalTrade]:
trade = self._get_adjust_trade_entry_for_candle(trade, sell_row)
# Check if we need to adjust our current positions
if self.config.get('position_adjustment_enable', False):
trade = self._get_adjust_trade_entry_for_candle(trade, sell_row)
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore

View File

@ -0,0 +1,95 @@
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import random
from datetime import datetime, timedelta, timezone
from pathlib import Path
from unittest.mock import MagicMock, PropertyMock
import logging
import numpy as np
import pandas as pd
import pytest
from arrow import Arrow
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi
from freqtrade.data.converter import clean_ohlcv_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timerange
from freqtrade.enums import RunMode, SellType
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.persistence import LocalTrade
from freqtrade.resolvers import StrategyResolver
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
def test_backtest_position_adjustment(default_conf, fee, mocker, testdatadir) -> None:
default_conf['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
patch_exchange(mocker)
default_conf.update({
"position_adjustment_enable": True,
"stake_amount": 100.0,
"dry_run_wallet": 1000.0,
"strategy": "StrategyTestPositionAdjust"
})
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
pair = 'UNITTEST/BTC'
timerange = TimeRange('date', None, 1517227800, 0)
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=10,
position_stacking=False,
)
results = result['results']
assert not results.empty
assert len(results) == 2
expected = pd.DataFrame(
{'pair': [pair, pair],
'stake_amount': [500.0, 100.0],
'amount': [4806.87657523, 970.63960782],
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
),
'close_date': pd.to_datetime([Arrow(2018, 1, 29, 22, 00, 0).datetime,
Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True),
'open_rate': [0.10401764894444211, 0.10302485],
'close_rate': [0.10453904066847439, 0.103541],
'fee_open': [0.0025, 0.0025],
'fee_close': [0.0025, 0.0025],
'trade_duration': [200, 40],
'profit_ratio': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'sell_reason': [SellType.ROI.value, SellType.ROI.value],
'initial_stop_loss_abs': [0.0940005, 0.09272236],
'initial_stop_loss_ratio': [-0.1, -0.1],
'stop_loss_abs': [0.0940005, 0.09272236],
'stop_loss_ratio': [-0.1, -0.1],
'min_rate': [0.10370188, 0.10300000000000001],
'max_rate': [0.10481985, 0.1038888],
'is_open': [False, False],
'buy_tag': [None, None],
})
pd.testing.assert_frame_equal(results, expected)
data_pair = processed[pair]
for _, t in results.iterrows():
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
# Check open trade rate alignes to open rate
assert ln is not None
# check close trade rate alignes to close rate or is between high and low
ln = data_pair.loc[data_pair["date"] == t["close_date"]]
assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
round(ln.iloc[0]["low"], 6) < round(
t["close_rate"], 6) < round(ln.iloc[0]["high"], 6))

View File

@ -0,0 +1,165 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
import talib.abstract as ta
from pandas import DataFrame
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.strategy.interface import IStrategy
from freqtrade.persistence import Trade
from datetime import datetime
class StrategyTestPositionAdjust(IStrategy):
"""
Strategy used by tests freqtrade bot.
Please do not modify this strategy, it's intended for internal use only.
Please look at the SampleStrategy in the user_data/strategy directory
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
INTERFACE_VERSION = 2
# Minimal ROI designed for the strategy
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy
stoploss = -0.10
# Optimal timeframe for the strategy
timeframe = '5m'
# Optional order type mapping
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
}
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 20
# Optional time in force for orders
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc',
}
def informative_pairs(self):
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# Minus Directional Indicator / Movement
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# EMA - Exponential Moving Average
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['rsi'] < 35) &
(dataframe['fastd'] < 35) &
(dataframe['adx'] > 30) &
(dataframe['plus_di'] > 0.5)
) |
(
(dataframe['adx'] > 65) &
(dataframe['plus_di'] > 0.5)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) |
(qtpylib.crossed_above(dataframe['fastd'], 70))
) &
(dataframe['adx'] > 10) &
(dataframe['minus_di'] > 0)
) |
(
(dataframe['adx'] > 70) &
(dataframe['minus_di'] > 0.5)
),
'sell'] = 1
return dataframe
def adjust_trade_position(self, pair: str, trade: Trade, current_time: datetime,
current_rate: float, current_profit: float, **kwargs):
if current_profit < -0.0075:
return self.wallets.get_trade_stake_amount(pair, None)
return None