Merge branch 'develop' into backtest_fitlivepredictions

This commit is contained in:
Wagner Costa Santos 2022-11-12 09:37:45 -03:00
commit f9c6c538be
18 changed files with 421 additions and 21 deletions

View File

@ -11,12 +11,14 @@
"mounts": [
"source=freqtrade-bashhistory,target=/home/ftuser/commandhistory,type=volume"
],
"workspaceMount": "source=${localWorkspaceFolder},target=/workspaces/freqtrade,type=bind,consistency=cached",
// Uncomment to connect as a non-root user if you've added one. See https://aka.ms/vscode-remote/containers/non-root.
"remoteUser": "ftuser",
"onCreateCommand": "pip install --user -e .",
"postCreateCommand": "freqtrade create-userdir --userdir user_data/",
"workspaceFolder": "/freqtrade/",
"workspaceFolder": "/workspaces/freqtrade",
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",

View File

@ -39,7 +39,7 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
- [X] [OKX](https://okx.com/)
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.

View File

@ -175,6 +175,10 @@ print(res)
## FTX
!!! Warning
Due to the current situation, we can no longer recommend FTX.
Please make sure to investigate the current situation before depositing any funds to FTX.
!!! Tip "Stoploss on Exchange"
FTX supports `stoploss_on_exchange` and can use both stop-loss-market and stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type of stoploss shall be used.

View File

@ -32,7 +32,7 @@ Freqtrade is a free and open source crypto trading bot written in Python. It is
- Run: Test your strategy with simulated money (Dry-Run mode) or deploy it with real money (Live-Trade mode).
- Run using Edge (optional module): The concept is to find the best historical [trade expectancy](edge.md#expectancy) by markets based on variation of the stop-loss and then allow/reject markets to trade. The sizing of the trade is based on a risk of a percentage of your capital.
- Control/Monitor: Use Telegram or a WebUI (start/stop the bot, show profit/loss, daily summary, current open trades results, etc.).
- Analyse: Further analysis can be performed on either Backtesting data or Freqtrade trading history (SQL database), including automated standard plots, and methods to load the data into [interactive environments](data-analysis.md).
- Analyze: Further analysis can be performed on either Backtesting data or Freqtrade trading history (SQL database), including automated standard plots, and methods to load the data into [interactive environments](data-analysis.md).
## Supported exchange marketplaces
@ -51,7 +51,7 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
- [X] [OKX](https://okx.com/)
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.

View File

@ -21,7 +21,11 @@ class Bybit(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 200,
"ccxt_futures_name": "linear"
"ccxt_futures_name": "linear",
"ohlcv_has_history": False,
}
_ft_has_futures: Dict = {
"ohlcv_has_history": True,
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [

View File

@ -0,0 +1,93 @@
import numpy as np
from joblib import Parallel
from sklearn.base import is_classifier
from sklearn.multioutput import MultiOutputClassifier, _fit_estimator
from sklearn.utils.fixes import delayed
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import has_fit_parameter
from freqtrade.exceptions import OperationalException
class FreqaiMultiOutputClassifier(MultiOutputClassifier):
def fit(self, X, y, sample_weight=None, fit_params=None):
"""Fit the model to data, separately for each output variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets. An indicator matrix turns on multilabel
estimation.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying classifier supports sample
weights.
fit_params : A list of dicts for the fit_params
Parameters passed to the ``estimator.fit`` method of each step.
Each dict may contain same or different values (e.g. different
eval_sets or init_models)
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
"""
if not hasattr(self.estimator, "fit"):
raise ValueError("The base estimator should implement a fit method")
y = self._validate_data(X="no_validation", y=y, multi_output=True)
if is_classifier(self):
check_classification_targets(y)
if y.ndim == 1:
raise ValueError(
"y must have at least two dimensions for "
"multi-output regression but has only one."
)
if sample_weight is not None and not has_fit_parameter(
self.estimator, "sample_weight"
):
raise ValueError("Underlying estimator does not support sample weights.")
if not fit_params:
fit_params = [None] * y.shape[1]
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_estimator)(
self.estimator, X, y[:, i], sample_weight, **fit_params[i]
)
for i in range(y.shape[1])
)
self.classes_ = []
for estimator in self.estimators_:
self.classes_.extend(estimator.classes_)
if len(set(self.classes_)) != len(self.classes_):
raise OperationalException(f"Class labels must be unique across targets: "
f"{self.classes_}")
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
if hasattr(self.estimators_[0], "feature_names_in_"):
self.feature_names_in_ = self.estimators_[0].feature_names_in_
return self
def predict_proba(self, X):
"""
Get predict_proba and stack arrays horizontally
"""
results = np.hstack(super().predict_proba(X))
return np.squeeze(results)
def predict(self, X):
"""
Get predict and squeeze into 2D array
"""
results = super().predict(X)
return np.squeeze(results)

View File

@ -87,6 +87,7 @@ class FreqaiDataDrawer:
self.create_follower_dict()
self.load_drawer_from_disk()
self.load_historic_predictions_from_disk()
self.metric_tracker: Dict[str, Dict[str, Dict[str, list]]] = {}
self.load_metric_tracker_from_disk()
self.training_queue: Dict[str, int] = {}
self.history_lock = threading.Lock()
@ -97,7 +98,6 @@ class FreqaiDataDrawer:
self.empty_pair_dict: pair_info = {
"model_filename": "", "trained_timestamp": 0,
"data_path": "", "extras": {}}
self.metric_tracker: Dict[str, Dict[str, Dict[str, list]]] = {}
def update_metric_tracker(self, metric: str, value: float, pair: str) -> None:
"""
@ -153,6 +153,7 @@ class FreqaiDataDrawer:
if exists:
with open(self.metric_tracker_path, "r") as fp:
self.metric_tracker = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
logger.info("Loading existing metric tracker from disk.")
else:
logger.info("Could not find existing metric tracker, starting from scratch")

View File

@ -0,0 +1,74 @@
import logging
import sys
from pathlib import Path
from typing import Any, Dict
from catboost import CatBoostClassifier, Pool
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.base_models.FreqaiMultiOutputClassifier import FreqaiMultiOutputClassifier
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class CatboostClassifierMultiTarget(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
cbc = CatBoostClassifier(
allow_writing_files=True,
loss_function='MultiClass',
train_dir=Path(dk.data_path),
**self.model_training_parameters,
)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
sample_weight = data_dictionary["train_weights"]
eval_sets = [None] * y.shape[1]
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
eval_sets = [None] * data_dictionary['test_labels'].shape[1]
for i in range(data_dictionary['test_labels'].shape[1]):
eval_sets[i] = Pool(
data=data_dictionary["test_features"],
label=data_dictionary["test_labels"].iloc[:, i],
weight=data_dictionary["test_weights"],
)
init_model = self.get_init_model(dk.pair)
if init_model:
init_models = init_model.estimators_
else:
init_models = [None] * y.shape[1]
fit_params = []
for i in range(len(eval_sets)):
fit_params.append({
'eval_set': eval_sets[i], 'init_model': init_models[i],
'log_cout': sys.stdout, 'log_cerr': sys.stderr,
})
model = FreqaiMultiOutputClassifier(estimator=cbc)
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
if thread_training:
model.n_jobs = y.shape[1]
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
return model

View File

@ -0,0 +1,64 @@
import logging
from typing import Any, Dict
from lightgbm import LGBMClassifier
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.base_models.FreqaiMultiOutputClassifier import FreqaiMultiOutputClassifier
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class LightGBMClassifierMultiTarget(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
lgb = LGBMClassifier(**self.model_training_parameters)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
sample_weight = data_dictionary["train_weights"]
eval_weights = None
eval_sets = [None] * y.shape[1]
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
eval_weights = [data_dictionary["test_weights"]]
eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore
for i in range(data_dictionary['test_labels'].shape[1]):
eval_sets[i] = ( # type: ignore
data_dictionary["test_features"],
data_dictionary["test_labels"].iloc[:, i]
)
init_model = self.get_init_model(dk.pair)
if init_model:
init_models = init_model.estimators_
else:
init_models = [None] * y.shape[1]
fit_params = []
for i in range(len(eval_sets)):
fit_params.append(
{'eval_set': eval_sets[i], 'eval_sample_weight': eval_weights,
'init_model': init_models[i]})
model = FreqaiMultiOutputClassifier(estimator=lgb)
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
if thread_training:
model.n_jobs = y.shape[1]
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
return model

View File

@ -667,7 +667,7 @@ class LocalTrade():
self.close(order.safe_price)
else:
self.recalc_trade_from_orders()
elif order.ft_order_side == 'stoploss':
elif order.ft_order_side == 'stoploss' and order.status not in ('canceled', 'open'):
self.stoploss_order_id = None
self.close_rate_requested = self.stop_loss
self.exit_reason = ExitType.STOPLOSS_ON_EXCHANGE.value

View File

@ -150,14 +150,20 @@ class Worker:
if timeframe:
next_tf = timeframe_to_next_date(timeframe)
# Maximum throttling should be until new candle arrives
# Offset of 0.2s is added to ensure a new candle has been issued.
next_tf_with_offset = next_tf.timestamp() - time.time() + timeframe_offset
# Offset is added to ensure a new candle has been issued.
next_tft = next_tf.timestamp() - time.time()
next_tf_with_offset = next_tft + timeframe_offset
if next_tft < sleep_duration and sleep_duration < next_tf_with_offset:
# Avoid hitting a new loop between the new candle and the candle with offset
sleep_duration = next_tf_with_offset
sleep_duration = min(sleep_duration, next_tf_with_offset)
sleep_duration = max(sleep_duration, 0.0)
# next_iter = datetime.now(timezone.utc) + timedelta(seconds=sleep_duration)
logger.debug(f"Throttling with '{func.__name__}()': sleep for {sleep_duration:.2f} s, "
f"last iteration took {time_passed:.2f} s.")
f"last iteration took {time_passed:.2f} s."
# f"next: {next_iter}"
)
self._sleep(sleep_duration)
return result

View File

@ -1,5 +1,6 @@
# Include all requirements to run the bot.
-r requirements.txt
-r requirements-plot.txt
# Required for freqai
scikit-learn==1.1.3

View File

@ -2,7 +2,7 @@ numpy==1.23.4
pandas==1.5.1
pandas-ta==0.3.14b
ccxt==2.1.33
ccxt==2.1.54
# Pin cryptography for now due to rust build errors with piwheels
cryptography==38.0.1
aiohttp==3.8.3

View File

@ -77,17 +77,19 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
shutil.rmtree(Path(freqai.dk.full_path))
@pytest.mark.parametrize('model', [
'LightGBMRegressorMultiTarget',
'XGBoostRegressorMultiTarget',
'CatboostRegressorMultiTarget',
@pytest.mark.parametrize('model, strat', [
('LightGBMRegressorMultiTarget', "freqai_test_multimodel_strat"),
('XGBoostRegressorMultiTarget', "freqai_test_multimodel_strat"),
('CatboostRegressorMultiTarget', "freqai_test_multimodel_strat"),
('LightGBMClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"),
('CatboostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat")
])
def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model):
if is_arm() and model == 'CatboostRegressorMultiTarget':
def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model, strat):
if is_arm() and 'Catboost' in model:
pytest.skip("CatBoost is not supported on ARM")
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.update({"strategy": "freqai_test_multimodel_strat"})
freqai_conf.update({"strategy": strat})
freqai_conf.update({"freqaimodel": model})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)

View File

@ -1460,6 +1460,7 @@ def test_api_strategies(botclient, tmpdir):
'StrategyTestV3CustomEntryPrice',
'StrategyTestV3Futures',
'freqai_test_classifier',
'freqai_test_multimodel_classifier_strat',
'freqai_test_multimodel_strat',
'freqai_test_strat'
]}

View File

@ -0,0 +1,138 @@
import logging
from functools import reduce
import numpy as np
import pandas as pd
import talib.abstract as ta
from pandas import DataFrame
from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair
logger = logging.getLogger(__name__)
class freqai_test_multimodel_classifier_strat(IStrategy):
"""
Test strategy - used for testing freqAI multimodel functionalities.
DO not use in production.
"""
minimal_roi = {"0": 0.1, "240": -1}
plot_config = {
"main_plot": {},
"subplots": {
"prediction": {"prediction": {"color": "blue"}},
"target_roi": {
"target_roi": {"color": "brown"},
},
"do_predict": {
"do_predict": {"color": "brown"},
},
},
}
process_only_new_candles = True
stoploss = -0.05
use_exit_signal = True
startup_candle_count: int = 300
can_short = False
linear_roi_offset = DecimalParameter(
0.00, 0.02, default=0.005, space="sell", optimize=False, load=True
)
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
coin = pair.split('/')[0]
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
informative[f"%-{coin}pct-change"] = informative["close"].pct_change()
informative[f"%-{coin}raw_volume"] = informative["volume"]
informative[f"%-{coin}raw_price"] = informative["close"]
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df['&s-up_or_down'] = np.where(df["close"].shift(-50) >
df["close"], 'up', 'down')
df['&s-up_or_down2'] = np.where(df["close"].shift(-50) >
df["close"], 'up2', 'down2')
return df
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
self.freqai_info = self.config["freqai"]
dataframe = self.freqai.start(dataframe, metadata, self)
dataframe["target_roi"] = dataframe["&-s_close_mean"] + dataframe["&-s_close_std"] * 1.25
dataframe["sell_roi"] = dataframe["&-s_close_mean"] - dataframe["&-s_close_std"] * 1.25
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"]]
if enter_long_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
] = (1, "long")
enter_short_conditions = [df["do_predict"] == 1, df["&-s_close"] < df["sell_roi"]]
if enter_short_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
] = (1, "short")
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
exit_long_conditions = [df["do_predict"] == 1, df["&-s_close"] < df["sell_roi"] * 0.25]
if exit_long_conditions:
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
exit_short_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"] * 0.25]
if exit_short_conditions:
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
return df

View File

@ -34,7 +34,7 @@ def test_search_all_strategies_no_failed():
directory = Path(__file__).parent / "strats"
strategies = StrategyResolver._search_all_objects(directory, enum_failed=False)
assert isinstance(strategies, list)
assert len(strategies) == 10
assert len(strategies) == 11
assert isinstance(strategies[0], dict)
@ -42,10 +42,10 @@ def test_search_all_strategies_with_failed():
directory = Path(__file__).parent / "strats"
strategies = StrategyResolver._search_all_objects(directory, enum_failed=True)
assert isinstance(strategies, list)
assert len(strategies) == 11
assert len(strategies) == 12
# with enum_failed=True search_all_objects() shall find 2 good strategies
# and 1 which fails to load
assert len([x for x in strategies if x['class'] is not None]) == 10
assert len([x for x in strategies if x['class'] is not None]) == 11
assert len([x for x in strategies if x['class'] is None]) == 1

View File

@ -113,6 +113,16 @@ def test_throttle_sleep_time(mocker, default_conf, caplog) -> None:
# 300 (5m) - 60 (1m - see set time above) - 5 (duration of throttled_func) = 235
assert 235.2 < sleep_mock.call_args[0][0] < 235.6
t.move_to("2022-09-01 05:04:51 +00:00")
sleep_mock.reset_mock()
# Offset of 5s, so we hit the sweet-spot between "candle" and "candle offset"
# Which should not get a throttle iteration to avoid late candle fetching
assert worker._throttle(throttled_func, throttle_secs=10, timeframe='5m',
timeframe_offset=5, x=1.2) == 42
assert sleep_mock.call_count == 1
# Time is slightly bigger than throttle secs due to the high timeframe offset.
assert 11.1 < sleep_mock.call_args[0][0] < 13.2
def test_throttle_with_assets(mocker, default_conf) -> None:
def throttled_func(nb_assets=-1):