mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
Merge pull request #393 from gcarq/balancing_hyperopt_2
Balancing hyperopt objective
This commit is contained in:
commit
fd3568d48f
|
@ -30,18 +30,19 @@ logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
|
||||
TARGET_TRADES = 1100
|
||||
TARGET_TRADES = 600
|
||||
TOTAL_TRIES = 0
|
||||
_CURRENT_TRIES = 0
|
||||
CURRENT_BEST_LOSS = 100
|
||||
|
||||
# max average trade duration in minutes
|
||||
# if eval ends with higher value, we consider it a failed eval
|
||||
MAX_ACCEPTED_TRADE_DURATION = 240
|
||||
MAX_ACCEPTED_TRADE_DURATION = 300
|
||||
|
||||
# this is expexted avg profit * expected trade count
|
||||
# for example 3.5%, 1100 trades, EXPECTED_MAX_PROFIT = 3.85
|
||||
EXPECTED_MAX_PROFIT = 3.85
|
||||
# check that the reported Σ% values do not exceed this!
|
||||
EXPECTED_MAX_PROFIT = 3.0
|
||||
|
||||
# Configuration and data used by hyperopt
|
||||
PROCESSED = None # optimize.preprocess(optimize.load_data())
|
||||
|
@ -133,10 +134,11 @@ def log_results(results):
|
|||
|
||||
if results['loss'] < CURRENT_BEST_LOSS:
|
||||
CURRENT_BEST_LOSS = results['loss']
|
||||
logger.info('{:5d}/{}: {}'.format(
|
||||
logger.info('{:5d}/{}: {}. Loss {:.5f}'.format(
|
||||
results['current_tries'],
|
||||
results['total_tries'],
|
||||
results['result']))
|
||||
results['result'],
|
||||
results['loss']))
|
||||
else:
|
||||
print('.', end='')
|
||||
sys.stdout.flush()
|
||||
|
@ -144,9 +146,9 @@ def log_results(results):
|
|||
|
||||
def calculate_loss(total_profit: float, trade_count: int, trade_duration: float):
|
||||
""" objective function, returns smaller number for more optimal results """
|
||||
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
|
||||
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||
duration_loss = min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
|
||||
duration_loss = 0.7 + 0.3 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
|
||||
return trade_loss + profit_loss + duration_loss
|
||||
|
||||
|
||||
|
@ -190,12 +192,13 @@ def optimizer(params):
|
|||
|
||||
def format_results(results: DataFrame):
|
||||
return ('{:6d} trades. Avg profit {: 5.2f}%. '
|
||||
'Total profit {: 11.8f} BTC. Avg duration {:5.1f} mins.').format(
|
||||
'Total profit {: 11.8f} BTC ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_BTC.sum(),
|
||||
results.profit_percent.sum(),
|
||||
results.duration.mean() * 5,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def buy_strategy_generator(params):
|
||||
|
|
Loading…
Reference in New Issue
Block a user