Compare commits

...

8 Commits

Author SHA1 Message Date
Matthias
a06bb56794
Merge 705d1e4cc0 into f50a633f87 2024-09-18 22:26:38 +02:00
Matthias
f50a633f87 docs: order table formatting
Some checks failed
Build Documentation / Deploy Docs through mike (push) Waiting to run
Binance Leverage tiers update / auto-update (push) Has been cancelled
2024-09-18 07:11:12 +02:00
Matthias
ad295946c0 fix: use precise calculation for decrease adjustment calculations 2024-09-17 20:19:22 +02:00
Matthias
705d1e4cc0 chore: remove freqAI per-line-ignores 2024-09-01 08:34:46 +02:00
Matthias
5b3f348bbb chore: Don't use method call in function header 2024-09-01 08:34:44 +02:00
Matthias
aa81c75bef chore: Further reduce mutable default usage 2024-09-01 08:34:42 +02:00
Matthias
6b889814ad chore: Fix further "mutable arguments" call 2024-09-01 08:34:39 +02:00
Matthias
1ade11f00b chore: Fix a few freqAI mutable defaults 2024-09-01 08:34:37 +02:00
8 changed files with 48 additions and 36 deletions

View File

@ -130,20 +130,20 @@ Most properties here can be None as they are dependent on the exchange response.
| Attribute | DataType | Description |
|------------|-------------|-------------|
`trade` | Trade | Trade object this order is attached to
`ft_pair` | string | Pair this order is for
`ft_is_open` | boolean | is the order filled?
`order_type` | string | Order type as defined on the exchange - usually market, limit or stoploss
`status` | string | Status as defined by ccxt. Usually open, closed, expired or canceled
`side` | string | Buy or Sell
`price` | float | Price the order was placed at
`average` | float | Average price the order filled at
`amount` | float | Amount in base currency
`filled` | float | Filled amount (in base currency)
`remaining` | float | Remaining amount
`cost` | float | Cost of the order - usually average * filled (*Exchange dependent on futures, may contain the cost with or without leverage and may be in contracts.*)
`stake_amount` | float | Stake amount used for this order. *Added in 2023.7.*
`order_date` | datetime | Order creation date **use `order_date_utc` instead**
`order_date_utc` | datetime | Order creation date (in UTC)
`order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead**
`order_fill_date_utc` | datetime | Order fill date
| `trade` | Trade | Trade object this order is attached to |
| `ft_pair` | string | Pair this order is for |
| `ft_is_open` | boolean | is the order filled? |
| `order_type` | string | Order type as defined on the exchange - usually market, limit or stoploss |
| `status` | string | Status as defined by ccxt. Usually open, closed, expired or canceled |
| `side` | string | Buy or Sell |
| `price` | float | Price the order was placed at |
| `average` | float | Average price the order filled at |
| `amount` | float | Amount in base currency |
| `filled` | float | Filled amount (in base currency) |
| `remaining` | float | Remaining amount |
| `cost` | float | Cost of the order - usually average * filled (*Exchange dependent on futures, may contain the cost with or without leverage and may be in contracts.*) |
| `stake_amount` | float | Stake amount used for this order. *Added in 2023.7.* |
| `order_date` | datetime | Order creation date **use `order_date_utc` instead** |
| `order_date_utc` | datetime | Order creation date (in UTC) |
| `order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead** |
| `order_fill_date_utc` | datetime | Order fill date |

View File

@ -47,19 +47,20 @@ class BaseEnvironment(gym.Env):
def __init__(
self,
df: DataFrame = DataFrame(),
prices: DataFrame = DataFrame(),
reward_kwargs: dict = {},
*,
df: DataFrame,
prices: DataFrame,
reward_kwargs: dict,
window_size=10,
starting_point=True,
id: str = "baseenv-1", # noqa: A002
seed: int = 1,
config: dict = {},
config: dict,
live: bool = False,
fee: float = 0.0015,
can_short: bool = False,
pair: str = "",
df_raw: DataFrame = DataFrame(),
df_raw: DataFrame,
):
"""
Initializes the training/eval environment.

View File

@ -488,7 +488,7 @@ def make_env(
seed: int,
train_df: DataFrame,
price: DataFrame,
env_info: Dict[str, Any] = {},
env_info: Dict[str, Any],
) -> Callable:
"""
Utility function for multiprocessed env.

View File

@ -214,7 +214,7 @@ class FreqaiDataKitchen:
self,
unfiltered_df: DataFrame,
training_feature_list: List,
label_list: List = list(),
label_list: Optional[List] = None,
training_filter: bool = True,
) -> Tuple[DataFrame, DataFrame]:
"""
@ -244,7 +244,7 @@ class FreqaiDataKitchen:
# we don't care about total row number (total no. datapoints) in training, we only care
# about removing any row with NaNs
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
labels = unfiltered_df.filter(label_list, axis=1)
labels = unfiltered_df.filter(label_list or [], axis=1)
drop_index_labels = pd.isnull(labels).any(axis=1)
drop_index_labels = (
drop_index_labels.replace(True, 1).replace(False, 0).infer_objects(copy=False)
@ -654,8 +654,8 @@ class FreqaiDataKitchen:
pair: str,
tf: str,
strategy: IStrategy,
corr_dataframes: dict = {},
base_dataframes: dict = {},
corr_dataframes: dict,
base_dataframes: dict,
is_corr_pairs: bool = False,
) -> DataFrame:
"""
@ -776,7 +776,7 @@ class FreqaiDataKitchen:
corr_dataframes: dict = {},
base_dataframes: dict = {},
pair: str = "",
prediction_dataframe: DataFrame = pd.DataFrame(),
prediction_dataframe: Optional[DataFrame] = None,
do_corr_pairs: bool = True,
) -> DataFrame:
"""
@ -822,7 +822,7 @@ class FreqaiDataKitchen:
if tf not in corr_dataframes[p]:
corr_dataframes[p][tf] = pd.DataFrame()
if not prediction_dataframe.empty:
if prediction_dataframe is not None and not prediction_dataframe.empty:
dataframe = prediction_dataframe.copy()
base_dataframes[self.config["timeframe"]] = dataframe.copy()
else:

View File

@ -25,7 +25,7 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
criterion: nn.Module,
device: str,
data_convertor: PyTorchDataConvertor,
model_meta_data: Dict[str, Any] = {},
model_meta_data: Optional[Dict[str, Any]] = None,
window_size: int = 1,
tb_logger: Any = None,
**kwargs,
@ -45,6 +45,8 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
:param n_epochs: The maximum number batches to use for evaluation.
:param batch_size: The size of the batches to use during training.
"""
if model_meta_data is None:
model_meta_data = {}
self.model = model
self.optimizer = optimizer
self.criterion = criterion

View File

@ -62,7 +62,7 @@ from freqtrade.rpc.rpc_types import (
)
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.util import MeasureTime
from freqtrade.util import FtPrecise, MeasureTime
from freqtrade.util.migrations.binance_mig import migrate_binance_futures_names
from freqtrade.wallets import Wallets
@ -784,7 +784,14 @@ class FreqtradeBot(LoggingMixin):
if stake_amount is not None and stake_amount < 0.0:
# We should decrease our position
amount = self.exchange.amount_to_contract_precision(
trade.pair, abs(float(stake_amount * trade.amount / trade.stake_amount))
trade.pair,
abs(
float(
FtPrecise(stake_amount)
* FtPrecise(trade.amount)
/ FtPrecise(trade.stake_amount)
)
),
)
if amount == 0.0:

View File

@ -168,8 +168,6 @@ max-complexity = 12
[tool.ruff.lint.per-file-ignores]
"freqtrade/freqai/**/*.py" = [
"S311", # Standard pseudo-random generators are not suitable for cryptographic purposes
"B006", # Bugbear - mutable default argument
"B008", # bugbear - Do not perform function calls in argument defaults
]
"tests/**/*.py" = [
"S101", # allow assert in tests

View File

@ -151,7 +151,9 @@ def test_get_pair_data_for_features_with_prealoaded_data(mocker, freqai_conf):
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
_, base_df = freqai.dd.get_base_and_corr_dataframes(timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.get_pair_data_for_features("LTC/BTC", "5m", strategy, base_dataframes=base_df)
df = freqai.dk.get_pair_data_for_features(
"LTC/BTC", "5m", strategy, {}, base_dataframes=base_df
)
assert df is base_df["5m"]
assert not df.empty
@ -171,7 +173,9 @@ def test_get_pair_data_for_features_without_preloaded_data(mocker, freqai_conf):
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
base_df = {"5m": pd.DataFrame()}
df = freqai.dk.get_pair_data_for_features("LTC/BTC", "5m", strategy, base_dataframes=base_df)
df = freqai.dk.get_pair_data_for_features(
"LTC/BTC", "5m", strategy, {}, base_dataframes=base_df
)
assert df is not base_df["5m"]
assert not df.empty