import logging from abc import ABC, abstractmethod import torch from freqtrade.freqai.freqai_interface import IFreqaiModel from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor logger = logging.getLogger(__name__) class BasePyTorchModel(IFreqaiModel, ABC): """ Base class for PyTorch type models. User *must* inherit from this class and set fit() and predict() and data_convertor property. """ def __init__(self, **kwargs): super().__init__(config=kwargs["config"]) self.dd.model_type = "pytorch" self.device = ( "mps" if torch.backends.mps.is_available() and torch.backends.mps.is_built() else ("cuda" if torch.cuda.is_available() else "cpu") ) test_size = self.freqai_info.get("data_split_parameters", {}).get("test_size") self.splits = ["train", "test"] if test_size != 0 else ["train"] self.window_size = self.freqai_info.get("conv_width", 1) @property @abstractmethod def data_convertor(self) -> PyTorchDataConvertor: """ a class responsible for converting `*_features` & `*_labels` pandas dataframes to pytorch tensors. """ raise NotImplementedError("Abstract property")