# pragma pylint: disable=attribute-defined-outside-init """ This module load custom hyperopts """ import logging from pathlib import Path from typing import Optional, Dict from freqtrade import OperationalException from freqtrade.constants import DEFAULT_HYPEROPT_LOSS from freqtrade.optimize.hyperopt_interface import IHyperOpt from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss from freqtrade.resolvers import IResolver logger = logging.getLogger(__name__) class HyperOptResolver(IResolver): """ This class contains all the logic to load custom hyperopt class """ __slots__ = ['hyperopt'] def __init__(self, config: Dict = None) -> None: """ Load the custom class from config parameter :param config: configuration dictionary """ config = config or {} if not config.get('hyperopt'): raise OperationalException("No Hyperopt set. Please use `--customhyperopt` to specify " "the Hyperopt class to use.") hyperopt_name = config['hyperopt'] self.hyperopt = self._load_hyperopt(hyperopt_name, config, extra_dir=config.get('hyperopt_path')) if not hasattr(self.hyperopt, 'populate_buy_trend'): logger.warning("Hyperopt class does not provide populate_buy_trend() method. " "Using populate_buy_trend from the strategy.") if not hasattr(self.hyperopt, 'populate_sell_trend'): logger.warning("Hyperopt class does not provide populate_sell_trend() method. " "Using populate_sell_trend from the strategy.") def _load_hyperopt( self, hyperopt_name: str, config: Dict, extra_dir: Optional[str] = None) -> IHyperOpt: """ Search and loads the specified hyperopt. :param hyperopt_name: name of the module to import :param config: configuration dictionary :param extra_dir: additional directory to search for the given hyperopt :return: HyperOpt instance or None """ current_path = Path(__file__).parent.parent.joinpath('optimize').resolve() abs_paths = [ config['user_data_dir'].joinpath('hyperopts'), current_path, ] if extra_dir: # Add extra hyperopt directory on top of search paths abs_paths.insert(0, Path(extra_dir).resolve()) hyperopt = self._load_object(paths=abs_paths, object_type=IHyperOpt, object_name=hyperopt_name, kwargs={'config': config}) if hyperopt: return hyperopt raise OperationalException( f"Impossible to load Hyperopt '{hyperopt_name}'. This class does not exist " "or contains Python code errors." ) class HyperOptLossResolver(IResolver): """ This class contains all the logic to load custom hyperopt loss class """ __slots__ = ['hyperoptloss'] def __init__(self, config: Dict = None) -> None: """ Load the custom class from config parameter :param config: configuration dictionary or None """ config = config or {} # Verify the hyperopt_loss is in the configuration, otherwise fallback to the # default hyperopt loss hyperoptloss_name = config.get('hyperopt_loss') or DEFAULT_HYPEROPT_LOSS self.hyperoptloss = self._load_hyperoptloss( hyperoptloss_name, config, extra_dir=config.get('hyperopt_path')) # Assign ticker_interval to be used in hyperopt self.hyperoptloss.__class__.ticker_interval = str(config['ticker_interval']) if not hasattr(self.hyperoptloss, 'hyperopt_loss_function'): raise OperationalException( f"Found hyperopt {hyperoptloss_name} does not implement `hyperopt_loss_function`.") def _load_hyperoptloss( self, hyper_loss_name: str, config: Dict, extra_dir: Optional[str] = None) -> IHyperOptLoss: """ Search and loads the specified hyperopt loss class. :param hyper_loss_name: name of the module to import :param config: configuration dictionary :param extra_dir: additional directory to search for the given hyperopt :return: HyperOptLoss instance or None """ current_path = Path(__file__).parent.parent.joinpath('optimize').resolve() abs_paths = [ config['user_data_dir'].joinpath('hyperopts'), current_path, ] if extra_dir: # Add extra hyperopt directory on top of search paths abs_paths.insert(0, Path(extra_dir).resolve()) hyperoptloss = self._load_object(paths=abs_paths, object_type=IHyperOptLoss, object_name=hyper_loss_name) if hyperoptloss: return hyperoptloss raise OperationalException( f"Impossible to load HyperoptLoss '{hyper_loss_name}'. This class does not exist " "or contains Python code errors." )