# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement """ This module contains the hyperopt logic """ import logging import sys import warnings from datetime import datetime, timezone from typing import Any from joblib import dump, load from joblib.externals import cloudpickle from pandas import DataFrame from freqtrade.constants import DATETIME_PRINT_FORMAT, Config from freqtrade.data.converter import trim_dataframes from freqtrade.data.history import get_timerange from freqtrade.data.metrics import calculate_market_change from freqtrade.enums import HyperoptState from freqtrade.exceptions import OperationalException from freqtrade.misc import deep_merge_dicts from freqtrade.optimize.backtesting import Backtesting # Import IHyperOptLoss to allow unpickling classes from these modules from freqtrade.optimize.hyperopt.hyperopt_auto import HyperOptAuto from freqtrade.optimize.hyperopt_loss.hyperopt_loss_interface import IHyperOptLoss from freqtrade.optimize.hyperopt_tools import HyperoptStateContainer, HyperoptTools from freqtrade.optimize.optimize_reports import generate_strategy_stats from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver # Suppress scikit-learn FutureWarnings from skopt with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=FutureWarning) from skopt import Optimizer from skopt.space import Dimension logger = logging.getLogger(__name__) MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization class HyperOptimizer: """ HyperoptOptimizer class This class is sent to the hyperopt worker processes. """ def __init__(self, config: Config) -> None: self.buy_space: list[Dimension] = [] self.sell_space: list[Dimension] = [] self.protection_space: list[Dimension] = [] self.roi_space: list[Dimension] = [] self.stoploss_space: list[Dimension] = [] self.trailing_space: list[Dimension] = [] self.max_open_trades_space: list[Dimension] = [] self.dimensions: list[Dimension] = [] self.config = config self.min_date: datetime self.max_date: datetime self.backtesting = Backtesting(self.config) self.pairlist = self.backtesting.pairlists.whitelist self.custom_hyperopt: HyperOptAuto self.analyze_per_epoch = self.config.get("analyze_per_epoch", False) if not self.config.get("hyperopt"): self.custom_hyperopt = HyperOptAuto(self.config) else: raise OperationalException( "Using separate Hyperopt files has been removed in 2021.9. Please convert " "your existing Hyperopt file to the new Hyperoptable strategy interface" ) self.backtesting._set_strategy(self.backtesting.strategylist[0]) self.custom_hyperopt.strategy = self.backtesting.strategy self.hyperopt_pickle_magic(self.backtesting.strategy.__class__.__bases__) self.custom_hyperoptloss: IHyperOptLoss = HyperOptLossResolver.load_hyperoptloss( self.config ) self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function self.data_pickle_file = ( self.config["user_data_dir"] / "hyperopt_results" / "hyperopt_tickerdata.pkl" ) self.market_change = 0.0 if HyperoptTools.has_space(self.config, "sell"): # Make sure use_exit_signal is enabled self.config["use_exit_signal"] = True def prepare_hyperopt(self) -> None: # Initialize spaces ... self.init_spaces() self.prepare_hyperopt_data() # We don't need exchange instance anymore while running hyperopt self.backtesting.exchange.close() self.backtesting.exchange._api = None self.backtesting.exchange._api_async = None self.backtesting.exchange.loop = None # type: ignore self.backtesting.exchange._loop_lock = None # type: ignore self.backtesting.exchange._cache_lock = None # type: ignore # self.backtesting.exchange = None # type: ignore self.backtesting.pairlists = None # type: ignore def get_strategy_name(self) -> str: return self.backtesting.strategy.get_strategy_name() def hyperopt_pickle_magic(self, bases) -> None: """ Hyperopt magic to allow strategy inheritance across files. For this to properly work, we need to register the module of the imported class to pickle as value. """ for modules in bases: if modules.__name__ != "IStrategy": cloudpickle.register_pickle_by_value(sys.modules[modules.__module__]) self.hyperopt_pickle_magic(modules.__bases__) def _get_params_dict( self, dimensions: list[Dimension], raw_params: list[Any] ) -> dict[str, Any]: # Ensure the number of dimensions match # the number of parameters in the list. if len(raw_params) != len(dimensions): raise ValueError("Mismatch in number of search-space dimensions.") # Return a dict where the keys are the names of the dimensions # and the values are taken from the list of parameters. return {d.name: v for d, v in zip(dimensions, raw_params, strict=False)} def _get_params_details(self, params: dict) -> dict: """ Return the params for each space """ result: dict = {} if HyperoptTools.has_space(self.config, "buy"): result["buy"] = {p.name: params.get(p.name) for p in self.buy_space} if HyperoptTools.has_space(self.config, "sell"): result["sell"] = {p.name: params.get(p.name) for p in self.sell_space} if HyperoptTools.has_space(self.config, "protection"): result["protection"] = {p.name: params.get(p.name) for p in self.protection_space} if HyperoptTools.has_space(self.config, "roi"): result["roi"] = { str(k): v for k, v in self.custom_hyperopt.generate_roi_table(params).items() } if HyperoptTools.has_space(self.config, "stoploss"): result["stoploss"] = {p.name: params.get(p.name) for p in self.stoploss_space} if HyperoptTools.has_space(self.config, "trailing"): result["trailing"] = self.custom_hyperopt.generate_trailing_params(params) if HyperoptTools.has_space(self.config, "trades"): result["max_open_trades"] = { "max_open_trades": ( self.backtesting.strategy.max_open_trades if self.backtesting.strategy.max_open_trades != float("inf") else -1 ) } return result def _get_no_optimize_details(self) -> dict[str, Any]: """ Get non-optimized parameters """ result: dict[str, Any] = {} strategy = self.backtesting.strategy if not HyperoptTools.has_space(self.config, "roi"): result["roi"] = {str(k): v for k, v in strategy.minimal_roi.items()} if not HyperoptTools.has_space(self.config, "stoploss"): result["stoploss"] = {"stoploss": strategy.stoploss} if not HyperoptTools.has_space(self.config, "trailing"): result["trailing"] = { "trailing_stop": strategy.trailing_stop, "trailing_stop_positive": strategy.trailing_stop_positive, "trailing_stop_positive_offset": strategy.trailing_stop_positive_offset, "trailing_only_offset_is_reached": strategy.trailing_only_offset_is_reached, } if not HyperoptTools.has_space(self.config, "trades"): result["max_open_trades"] = {"max_open_trades": strategy.max_open_trades} return result def init_spaces(self): """ Assign the dimensions in the hyperoptimization space. """ if HyperoptTools.has_space(self.config, "protection"): # Protections can only be optimized when using the Parameter interface logger.debug("Hyperopt has 'protection' space") # Enable Protections if protection space is selected. self.config["enable_protections"] = True self.backtesting.enable_protections = True self.protection_space = self.custom_hyperopt.protection_space() if HyperoptTools.has_space(self.config, "buy"): logger.debug("Hyperopt has 'buy' space") self.buy_space = self.custom_hyperopt.buy_indicator_space() if HyperoptTools.has_space(self.config, "sell"): logger.debug("Hyperopt has 'sell' space") self.sell_space = self.custom_hyperopt.sell_indicator_space() if HyperoptTools.has_space(self.config, "roi"): logger.debug("Hyperopt has 'roi' space") self.roi_space = self.custom_hyperopt.roi_space() if HyperoptTools.has_space(self.config, "stoploss"): logger.debug("Hyperopt has 'stoploss' space") self.stoploss_space = self.custom_hyperopt.stoploss_space() if HyperoptTools.has_space(self.config, "trailing"): logger.debug("Hyperopt has 'trailing' space") self.trailing_space = self.custom_hyperopt.trailing_space() if HyperoptTools.has_space(self.config, "trades"): logger.debug("Hyperopt has 'trades' space") self.max_open_trades_space = self.custom_hyperopt.max_open_trades_space() self.dimensions = ( self.buy_space + self.sell_space + self.protection_space + self.roi_space + self.stoploss_space + self.trailing_space + self.max_open_trades_space ) def assign_params(self, params_dict: dict[str, Any], category: str) -> None: """ Assign hyperoptable parameters """ for attr_name, attr in self.backtesting.strategy.enumerate_parameters(category): if attr.optimize: # noinspection PyProtectedMember attr.value = params_dict[attr_name] def generate_optimizer(self, raw_params: list[Any]) -> dict[str, Any]: """ Used Optimize function. Called once per epoch to optimize whatever is configured. Keep this function as optimized as possible! """ HyperoptStateContainer.set_state(HyperoptState.OPTIMIZE) backtest_start_time = datetime.now(timezone.utc) params_dict = self._get_params_dict(self.dimensions, raw_params) # Apply parameters if HyperoptTools.has_space(self.config, "buy"): self.assign_params(params_dict, "buy") if HyperoptTools.has_space(self.config, "sell"): self.assign_params(params_dict, "sell") if HyperoptTools.has_space(self.config, "protection"): self.assign_params(params_dict, "protection") if HyperoptTools.has_space(self.config, "roi"): self.backtesting.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table( params_dict ) if HyperoptTools.has_space(self.config, "stoploss"): self.backtesting.strategy.stoploss = params_dict["stoploss"] if HyperoptTools.has_space(self.config, "trailing"): d = self.custom_hyperopt.generate_trailing_params(params_dict) self.backtesting.strategy.trailing_stop = d["trailing_stop"] self.backtesting.strategy.trailing_stop_positive = d["trailing_stop_positive"] self.backtesting.strategy.trailing_stop_positive_offset = d[ "trailing_stop_positive_offset" ] self.backtesting.strategy.trailing_only_offset_is_reached = d[ "trailing_only_offset_is_reached" ] if HyperoptTools.has_space(self.config, "trades"): if self.config["stake_amount"] == "unlimited" and ( params_dict["max_open_trades"] == -1 or params_dict["max_open_trades"] == 0 ): # Ignore unlimited max open trades if stake amount is unlimited params_dict.update({"max_open_trades": self.config["max_open_trades"]}) updated_max_open_trades = ( int(params_dict["max_open_trades"]) if (params_dict["max_open_trades"] != -1 and params_dict["max_open_trades"] != 0) else float("inf") ) self.config.update({"max_open_trades": updated_max_open_trades}) self.backtesting.strategy.max_open_trades = updated_max_open_trades with self.data_pickle_file.open("rb") as f: processed = load(f, mmap_mode="r") if self.analyze_per_epoch: # Data is not yet analyzed, rerun populate_indicators. processed = self.advise_and_trim(processed) bt_results = self.backtesting.backtest( processed=processed, start_date=self.min_date, end_date=self.max_date ) backtest_end_time = datetime.now(timezone.utc) bt_results.update( { "backtest_start_time": int(backtest_start_time.timestamp()), "backtest_end_time": int(backtest_end_time.timestamp()), } ) return self._get_results_dict( bt_results, self.min_date, self.max_date, params_dict, processed=processed ) def _get_results_dict( self, backtesting_results: dict[str, Any], min_date: datetime, max_date: datetime, params_dict: dict[str, Any], processed: dict[str, DataFrame], ) -> dict[str, Any]: params_details = self._get_params_details(params_dict) strat_stats = generate_strategy_stats( self.pairlist, self.backtesting.strategy.get_strategy_name(), backtesting_results, min_date, max_date, market_change=self.market_change, is_hyperopt=True, ) results_explanation = HyperoptTools.format_results_explanation_string( strat_stats, self.config["stake_currency"] ) not_optimized = self.backtesting.strategy.get_no_optimize_params() not_optimized = deep_merge_dicts(not_optimized, self._get_no_optimize_details()) trade_count = strat_stats["total_trades"] total_profit = strat_stats["profit_total"] # If this evaluation contains too short amount of trades to be # interesting -- consider it as 'bad' (assigned max. loss value) # in order to cast this hyperspace point away from optimization # path. We do not want to optimize 'hodl' strategies. loss: float = MAX_LOSS if trade_count >= self.config["hyperopt_min_trades"]: loss = self.calculate_loss( results=backtesting_results["results"], trade_count=trade_count, min_date=min_date, max_date=max_date, config=self.config, processed=processed, backtest_stats=strat_stats, ) return { "loss": loss, "params_dict": params_dict, "params_details": params_details, "params_not_optimized": not_optimized, "results_metrics": strat_stats, "results_explanation": results_explanation, "total_profit": total_profit, } def get_optimizer( self, cpu_count: int, random_state: int, initial_points: int, model_queue_size: int, ) -> Optimizer: dimensions = self.dimensions estimator = self.custom_hyperopt.generate_estimator(dimensions=dimensions) acq_optimizer = "sampling" if isinstance(estimator, str): if estimator not in ("GP", "RF", "ET", "GBRT"): raise OperationalException(f"Estimator {estimator} not supported.") else: acq_optimizer = "auto" logger.info(f"Using estimator {estimator}.") return Optimizer( dimensions, base_estimator=estimator, acq_optimizer=acq_optimizer, n_initial_points=initial_points, acq_optimizer_kwargs={"n_jobs": cpu_count}, random_state=random_state, model_queue_size=model_queue_size, ) def advise_and_trim(self, data: dict[str, DataFrame]) -> dict[str, DataFrame]: preprocessed = self.backtesting.strategy.advise_all_indicators(data) # Trim startup period from analyzed dataframe to get correct dates for output. # This is only used to keep track of min/max date after trimming. # The result is NOT returned from this method, actual trimming happens in backtesting. trimmed = trim_dataframes(preprocessed, self.timerange, self.backtesting.required_startup) self.min_date, self.max_date = get_timerange(trimmed) if not self.market_change: self.market_change = calculate_market_change(trimmed, "close") # Real trimming will happen as part of backtesting. return preprocessed def prepare_hyperopt_data(self) -> None: HyperoptStateContainer.set_state(HyperoptState.DATALOAD) data, self.timerange = self.backtesting.load_bt_data() self.backtesting.load_bt_data_detail() logger.info("Dataload complete. Calculating indicators") if not self.analyze_per_epoch: HyperoptStateContainer.set_state(HyperoptState.INDICATORS) preprocessed = self.advise_and_trim(data) logger.info( f"Hyperopting with data from " f"{self.min_date.strftime(DATETIME_PRINT_FORMAT)} " f"up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} " f"({(self.max_date - self.min_date).days} days).." ) # Store non-trimmed data - will be trimmed after signal generation. dump(preprocessed, self.data_pickle_file) else: dump(data, self.data_pickle_file)