import logging from typing import Any, Dict # , Tuple # import numpy.typing as npt import torch as th import numpy as np from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel from pathlib import Path logger = logging.getLogger(__name__) class ReinforcementLearner(BaseReinforcementLearningModel): """ User created Reinforcement Learning Model prediction model. """ def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen): train_df = data_dictionary["train_features"] total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df) policy_kwargs = dict(activation_fn=th.nn.ReLU, net_arch=[256, 256, 128]) model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs, tensorboard_log=Path(dk.data_path / "tensorboard"), **self.freqai_info['model_training_parameters'] ) model.learn( total_timesteps=int(total_timesteps), callback=self.eval_callback ) if Path(dk.data_path / "best_model.zip").is_file(): logger.info('Callback found a best model.') best_model = self.MODELCLASS.load(dk.data_path / "best_model") return best_model logger.info('Couldnt find best model, using final model instead.') return model class MyRLEnv(Base5ActionRLEnv): """ User can modify any part of the environment by overriding base functions """ def calculate_reward(self, action): if self._last_trade_tick is None: return 0. # close long if action == Actions.Long_exit.value and self._position == Positions.Long: last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open) current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open) factor = 1 if self.close_trade_profit and self.close_trade_profit[-1] > self.profit_aim * self.rr: factor = self.rl_config['model_reward_parameters'].get('win_reward_factor', 2) return float((np.log(current_price) - np.log(last_trade_price)) * factor) # close short if action == Actions.Short_exit.value and self._position == Positions.Short: last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open) current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open) factor = 1 if self.close_trade_profit and self.close_trade_profit[-1] > self.profit_aim * self.rr: factor = self.rl_config['model_reward_parameters'].get('win_reward_factor', 2) return float(np.log(last_trade_price) - np.log(current_price) * factor) return 0.