# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement """ This module contains the hyperopt logic """ import logging import os import sys from operator import itemgetter from pathlib import Path from pprint import pprint from typing import Any, Dict, List from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects, cpu_count from pandas import DataFrame from skopt import Optimizer from skopt.space import Dimension from freqtrade.configuration import Arguments from freqtrade.data.history import load_data, get_timeframe from freqtrade.optimize.backtesting import Backtesting from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver from freqtrade.optimize.hyperopt_loss import hyperopt_loss_legacy logger = logging.getLogger(__name__) INITIAL_POINTS = 30 MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl') TRIALSDATA_PICKLE = os.path.join('user_data', 'hyperopt_results.pickle') HYPEROPT_LOCKFILE = os.path.join('user_data', 'hyperopt.lock') class Hyperopt(Backtesting): """ Hyperopt class, this class contains all the logic to run a hyperopt simulation To run a backtest: hyperopt = Hyperopt(config) hyperopt.start() """ def __init__(self, config: Dict[str, Any]) -> None: super().__init__(config) self.custom_hyperopt = HyperOptResolver(self.config).hyperopt # set TARGET_TRADES to suit your number concurrent trades so its realistic # to the number of days self.target_trades = 600 self.total_tries = config.get('epochs', 0) self.current_best_loss = 100 # max average trade duration in minutes # if eval ends with higher value, we consider it a failed eval self.max_accepted_trade_duration = 300 # This is assumed to be expected avg profit * expected trade count. # For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades, # self.expected_max_profit = 3.85 # Check that the reported Σ% values do not exceed this! # Note, this is ratio. 3.85 stated above means 385Σ%. self.expected_max_profit = 3.0 if self.config.get('hyperopt_clean_state'): self.clean_hyperopt() # Previous evaluations self.trials_file = TRIALSDATA_PICKLE self.trials: List = [] # Assign loss function if self.config['loss_function'] == 'legacy': self.calculate_loss = hyperopt_loss_legacy elif (self.config['loss_function'] == 'custom' and hasattr(self.custom_hyperopt, 'hyperopt_loss_custom')): self.calculate_loss = self.custom_hyperopt.hyperopt_loss_custom # Implement fallback to avoid odd crashes when custom-hyperopt fails to load. # TODO: Maybe this should just stop hyperopt completely? if not hasattr(self.custom_hyperopt, 'hyperopt_loss_custom'): logger.warning("Could not load hyperopt configuration. " "Falling back to legacy configuration.") self.calculate_loss = hyperopt_loss_legacy # Populate functions here (hasattr is slow so should not be run during "regular" operations) if hasattr(self.custom_hyperopt, 'populate_buy_trend'): self.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore if hasattr(self.custom_hyperopt, 'populate_sell_trend'): self.advise_sell = self.custom_hyperopt.populate_sell_trend # type: ignore # Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set if self.config.get('use_max_market_positions', True): self.max_open_trades = self.config['max_open_trades'] else: logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...') self.max_open_trades = 0 def clean_hyperopt(self): """ Remove hyperopt pickle files to restart hyperopt. """ for f in [TICKERDATA_PICKLE, TRIALSDATA_PICKLE]: p = Path(f) if p.is_file(): logger.info(f"Removing `{p}`.") p.unlink() def get_args(self, params): dimensions = self.hyperopt_space() # Ensure the number of dimensions match # the number of parameters in the list x. if len(params) != len(dimensions): raise ValueError('Mismatch in number of search-space dimensions. ' f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}') # Create a dict where the keys are the names of the dimensions # and the values are taken from the list of parameters x. arg_dict = {dim.name: value for dim, value in zip(dimensions, params)} return arg_dict def save_trials(self) -> None: """ Save hyperopt trials to file """ if self.trials: logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file) dump(self.trials, self.trials_file) def read_trials(self) -> List: """ Read hyperopt trials file """ logger.info('Reading Trials from \'%s\'', self.trials_file) trials = load(self.trials_file) os.remove(self.trials_file) return trials def log_trials_result(self) -> None: """ Display Best hyperopt result """ results = sorted(self.trials, key=itemgetter('loss')) best_result = results[0] logger.info( 'Best result:\n%s\nwith values:\n', best_result['result'] ) pprint(best_result['params'], indent=4) if 'roi_t1' in best_result['params']: logger.info('ROI table:') pprint(self.custom_hyperopt.generate_roi_table(best_result['params']), indent=4) def log_results(self, results) -> None: """ Log results if it is better than any previous evaluation """ print_all = self.config.get('print_all', False) if print_all or results['loss'] < self.current_best_loss: # Output human-friendly index here (starting from 1) current = results['current_tries'] + 1 total = results['total_tries'] res = results['result'] loss = results['loss'] self.current_best_loss = results['loss'] log_msg = f'{current:5d}/{total}: {res} Objective: {loss:.5f}' log_msg = f'*{log_msg}' if results['initial_point'] else f' {log_msg}' if print_all: print(log_msg) else: print('\n' + log_msg) else: print('.', end='') sys.stdout.flush() def has_space(self, space: str) -> bool: """ Tell if a space value is contained in the configuration """ if space in self.config['spaces'] or 'all' in self.config['spaces']: return True return False def hyperopt_space(self) -> List[Dimension]: """ Return the space to use during Hyperopt """ spaces: List[Dimension] = [] if self.has_space('buy'): spaces += self.custom_hyperopt.indicator_space() if self.has_space('sell'): spaces += self.custom_hyperopt.sell_indicator_space() # Make sure experimental is enabled if 'experimental' not in self.config: self.config['experimental'] = {} self.config['experimental']['use_sell_signal'] = True if self.has_space('roi'): spaces += self.custom_hyperopt.roi_space() if self.has_space('stoploss'): spaces += self.custom_hyperopt.stoploss_space() return spaces def generate_optimizer(self, _params: Dict) -> Dict: """ Used Optimize function. Called once per epoch to optimize whatever is configured. Keep this function as optimized as possible! """ params = self.get_args(_params) if self.has_space('roi'): self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params) if self.has_space('buy'): self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params) if self.has_space('sell'): self.advise_sell = self.custom_hyperopt.sell_strategy_generator(params) if self.has_space('stoploss'): self.strategy.stoploss = params['stoploss'] processed = load(TICKERDATA_PICKLE) min_date, max_date = get_timeframe(processed) results = self.backtest( { 'stake_amount': self.config['stake_amount'], 'processed': processed, 'max_open_trades': self.max_open_trades, 'position_stacking': self.config.get('position_stacking', False), 'start_date': min_date, 'end_date': max_date, } ) result_explanation = self.format_results(results) trade_count = len(results.index) # If this evaluation contains too short amount of trades to be # interesting -- consider it as 'bad' (assigned max. loss value) # in order to cast this hyperspace point away from optimization # path. We do not want to optimize 'hodl' strategies. if trade_count < self.config['hyperopt_min_trades']: return { 'loss': MAX_LOSS, 'params': params, 'result': result_explanation, } loss = self.calculate_loss(results=results, trade_count=trade_count, min_date=min_date.datetime, max_date=max_date.datetime) return { 'loss': loss, 'params': params, 'result': result_explanation, } def format_results(self, results: DataFrame) -> str: """ Return the format result in a string """ trades = len(results.index) avg_profit = results.profit_percent.mean() * 100.0 total_profit = results.profit_abs.sum() stake_cur = self.config['stake_currency'] profit = results.profit_percent.sum() * 100.0 duration = results.trade_duration.mean() return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. ' f'Total profit {total_profit: 11.8f} {stake_cur} ' f'({profit: 7.2f}Σ%). Avg duration {duration:5.1f} mins.') def get_optimizer(self, cpu_count) -> Optimizer: return Optimizer( self.hyperopt_space(), base_estimator="ET", acq_optimizer="auto", n_initial_points=INITIAL_POINTS, acq_optimizer_kwargs={'n_jobs': cpu_count}, random_state=self.config.get('hyperopt_random_state', None) ) def run_optimizer_parallel(self, parallel, asked) -> List: return parallel(delayed( wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked) def load_previous_results(self): """ read trials file if we have one """ if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0: self.trials = self.read_trials() logger.info( 'Loaded %d previous evaluations from disk.', len(self.trials) ) def start(self) -> None: timerange = Arguments.parse_timerange(None if self.config.get( 'timerange') is None else str(self.config.get('timerange'))) data = load_data( datadir=Path(self.config['datadir']) if self.config.get('datadir') else None, pairs=self.config['exchange']['pair_whitelist'], ticker_interval=self.ticker_interval, refresh_pairs=self.config.get('refresh_pairs', False), exchange=self.exchange, timerange=timerange ) if not data: logger.critical("No data found. Terminating.") return min_date, max_date = get_timeframe(data) logger.info( 'Hyperopting with data from %s up to %s (%s days)..', min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days ) self.strategy.advise_indicators = \ self.custom_hyperopt.populate_indicators # type: ignore preprocessed = self.strategy.tickerdata_to_dataframe(data) dump(preprocessed, TICKERDATA_PICKLE) # We don't need exchange instance anymore while running hyperopt self.exchange = None # type: ignore self.load_previous_results() cpus = cpu_count() logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!') config_jobs = self.config.get('hyperopt_jobs', -1) logger.info(f'Number of parallel jobs set as: {config_jobs}') opt = self.get_optimizer(config_jobs) try: with Parallel(n_jobs=config_jobs) as parallel: jobs = parallel._effective_n_jobs() logger.info(f'Effective number of parallel workers used: {jobs}') EVALS = max(self.total_tries // jobs, 1) for i in range(EVALS): asked = opt.ask(n_points=jobs) f_val = self.run_optimizer_parallel(parallel, asked) opt.tell(asked, [i['loss'] for i in f_val]) self.trials += f_val for j in range(jobs): current = i * jobs + j self.log_results({ 'loss': f_val[j]['loss'], 'current_tries': current, 'initial_point': current < INITIAL_POINTS, 'total_tries': self.total_tries, 'result': f_val[j]['result'], }) logger.debug(f"Optimizer params: {f_val[j]['params']}") for j in range(jobs): logger.debug(f"Optimizer state: Xi: {opt.Xi[-j-1]}, yi: {opt.yi[-j-1]}") except KeyboardInterrupt: print('User interrupted..') self.save_trials() self.log_trials_result()